• World Neurosurg · Dec 2019

    The Impact of Microelectrode Recording on Lead Location in Deep Brain Stimulation for the Treatment of Movement Disorders.

    • Ryan B Kochanski, Sander Bus, Bledi Brahimaj, Alireza Borghei, Kristen L Kraimer, Kavantissa M Keppetipola, Blake Beehler, Gian Pal, Leo Verhagen Metman, and Sepehr Sani.
    • Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA.
    • World Neurosurg. 2019 Dec 1; 132: e487-e495.

    ObjectiveDuring deep brain stimulation (DBS) surgery, microelectrode recording (MER) leads to target refinement from the initial plan in 30% to 47% of hemispheres; however, it is unclear whether the DBS lead ultimately resides within the MER-optimized target in relation to initial radiographic target coordinates in these hemispheres. This study aimed to determine the frequency of discordance between radiographic and neurophysiologic nucleus and whether target optimization with MER leads to a significant change in DBS lead location away from initial target.MethodsConsecutive cases of DBS surgery with MER using intraoperative computed tomography were included. Coordinates of initial anatomic target (AT), MER-optimized target (MER-O) and DBS lead were obtained. Hemispheres were categorized as "discordant" (D) if there was a suboptimal neurophysiologic signal despite accurate targeting of AT. Hemispheres where the first MER pass was satisfactory were deemed "concordant" (C). Coordinates and radial distances between 1) AT/MER-O; 2) MER-O/DBS; and 3) AT/DBS were calculated and compared.ResultsOf the 273 hemispheres analyzed, 143 (52%) were D, and 130 (48%) were C. In C hemispheres, DBS lead placement error (mean ± standard error of the mean) was 0.88 ± 0.07 mm. In D hemispheres, MER resulted in significant migration of DBS lead (mean AT-DBS error 2.11 ± 0.07 mm), and this distance was significantly greater than the distance between MER-O and DBS (2.11 vs. 1.09 mm, P < 0.05). Directional assessment revealed that the DBS lead migrated in the intended direction as determined by MER-O in D hemispheres, except when the intended direction was anterolateral.ConclusionsDiscordance between radiographic and neurophysiologic target was seen in 52% of hemispheres, and MER resulted in appropriate deviation of the DBS lead toward the appropriate target. The actual value of the deviation, when compared with DBS lead placement error in C hemispheres, was, on average, small.Copyright © 2019 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…