-
- C Procaccini, M Maksimovic, T Aitta-Aho, E R Korpi, and A-M Linden.
- Institute of Biomedicine/Pharmacology, Biomedicum Helsinki, P.O.B. 63, FIN-00014 University of Helsinki, Finland.
- Neuroscience. 2013 Oct 10;250:189-200.
AbstractDysfunctional glutamatergic neurotransmission has been implicated in schizophrenia and mood disorders. As a putative model for these disorders, a mouse line lacking the GluA1 subunit (GluA1-KO) of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor displays a robust novelty-induced hyperlocomotion associated with excessive neuronal activation in the hippocampus. Agonists of metabotropic glutamate 2/3 receptors (mGluR2/3) inhibit glutamate release in various brain regions and they have been shown to inhibit neuronal activation in the hippocampus. Here, we tested a hypothesis that novelty-induced hyperlocomotion in the GluA1-KO mice is mediated via excessive hippocampal neuronal activation by analyzing whether an mGluR2/3 agonist inhibits this phenotypic feature. GluA1-KO mice and littermate wildtype (WT) controls were administered with (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740) (15 mg/kg, i.p.) 30 min before a 2-h exposure to novel arenas after which c-Fos immunopositive cells were analyzed in the hippocampus. LY354740 (15 mg/kg) decreased hyperactivity in male GluA1-KO mice, with only a minimal effect in WT controls. This was observed in two cohorts of animals, one naïve to handling and injections, another pre-handled and accustomed to injections. LY354740 (15 mg/kg) also reduced the excessive c-Fos expression in the dorsal hippocampal CA1 pyramidal cell layer in maleGluA1-KO mice, while not affecting c-Fos levels in WT mice. In female mice, no significant effect for LY354740 (15 mg/kg) on hyperactive behavior or hippocampal c-Fos was observed in either genotype or treatment cohort. A higher dose of LY354740 (30 mg/kg) alleviated hyperlocomotion of GluA1-KO males, but not that of GluA1-KO females. In conclusion, the excessive behavioral hyperactivity of GluA1-KO mice can be partly prevented by reducing neuronal excitability in the hippocampus with the mGluR2/3 agonist suggesting that the hippocampal reactivity is strongly involved in the behavioral phenotype of GluA1-KO mice.Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.