• World Neurosurg · Dec 2019

    Accuracy of radiomics-based feature analysis on multiparametric MR images for non-invasive meningioma grading.

    • Kai Roman Laukamp, Georgy Shakirin, Bettina Baeßler, Frank Thiele, David Zopfs, Nils Große Hokamp, Marco Timmer, Christoph Kabbasch, Michael Perkuhn, and Jan Borggrefe.
    • Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany; Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA; Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.
    • World Neurosurg. 2019 Dec 1; 132: e366-e390.

    ObjectiveMeningioma grading is relevant to therapy decisions in complete or partial resection, observation, and radiotherapy because higher grades are associated with tumor growth and recurrence. The differentiation of low and intermediate grades is particularly challenging. This study attempts to apply radiomics-based shape and texture analysis on routine multiparametric magnetic resonance imaging (MRI) from different scanners and institutions for grading.MethodsWe used MRI data (T1-weighted/T2-weighted, T1-weighted-contrast-enhanced [T1CE], fluid-attenuated inversion recovery [FLAIR], diffusion-weighted imaging [DWI], apparent diffusion coefficient [ADC]) of grade I (n = 46) and grade II (n = 25) nontreated meningiomas with histologic workup. Two experienced radiologists performed manual tumor segmentations on FLAIR, T1CE, and ADC images in consensus. The MRI data were preprocessed through T1CE and T1-subtraction, coregistration, resampling, and normalization. A PyRadiomics package was used to generate 990 shape/texture features. Stepwise dimension reduction and robust radiomics feature selection were performed. Biopsy results were used as standard of reference.ResultsFour statistically independent radiomics features were identified as showing the strongest predictive values for higher tumor grades: roundness-of-FLAIR-shape (area under curve [AUC], 0.80), cluster-shades-of-FLAIR/T1CE-gray-level (AUC, 0.80), DWI/ADC-gray-level-variability (AUC, 0.72), and FLAIR/T1CE-gray-level-energy (AUC, 0.76). In a multivariate logistic regression model, the combination of the features led to an AUC of 0.91 for the differentiation of grade I and grade II meningiomas.ConclusionsOur results indicate that radiomics-based feature analysis applied on routine MRI is viable for meningioma grading, and a multivariate logistic regression model yielded strong classification performances. More advanced tumor stages are identifiable through certain shape parameters of the lesion, textural patterns in morphologic MRI sequences, and DWI/ADC variability.Copyright © 2019 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…