• Der Schmerz · Dec 2019

    Review

    [Generating knowledge from complex data sets in human experimental pain research].

    • Jörn Lötsch, Gerd Geisslinger, and Carmen Walter.
    • Institut für Klinische Pharmakologie, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland. j.loetsch@em.uni-frankfurt.de.
    • Schmerz. 2019 Dec 1; 33 (6): 502-513.

    AbstractPain has a complex pathophysiology that is expressed in multifaceted and heterogeneous clinical phenotypes. This makes research on pain and its treatment a potentially data-rich field as large amounts of complex data are generated. Typical sources of such data are investigations with functional magnetic resonance imaging, complex quantitative sensory testing, next-generation DNA sequencing and functional genomic research approaches, such as those aimed at analgesic drug discovery or repositioning of drugs known from other indications as new analgesics. Extracting information from these big data requires complex data scientific-based methods belonging more to computer science than to statistics. A particular interest is currently focused on machine learning, the methods of which are used for the detection of interesting and biologically meaningful structures in high-dimensional data. Subsequently, classifiers can be created that predict clinical phenotypes from, e.g. clinical or genetic features acquired from subjects. In addition, knowledge discovery in big data accessible in electronic knowledge bases, can be used to generate hypotheses and to exploit the accumulated knowledge about pain for the discovery of new analgesic drugs. This enables so-called data-information-knowledge-wisdom (DIKW) approaches to be followed in pain research. This article highlights current examples from pain research to provide an overview about contemporary data scientific methods used in this field of research.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…