-
- Julieta G Mendoza-Torreblanca, M Edna García-Cruz, Itzel Sánchez-Cruz, Beatriz Gomez-Gonzalez, Sergio Juárez-Méndez, and Gisela Gómez-Lira.
- Neurosciences Laboratory, Instituto Nacional de Pediatría, Insurgentes Sur 3700 Letra C, Insurgentes Cuicuilco, 04530 Ciudad de México, México.
- Neuroscience. 2019 Nov 1; 419: 108-120.
AbstractSynaptic vesicle protein 2A (SV2A), which plays an important role in the pathophysiology of epilepsy, is a unique vesicular protein recognized as a pharmacological target of anticonvulsant drugs. Furthermore, SV2A is a potential synaptic density marker, as it is ubiquitously expressed throughout the brain in all nerve terminals independently of their neurotransmitter content. Due to the growing interest in this protein, we thoroughly analyzed SV2A levels, expression patterns and colocalization in both excitatory and inhibitory synapses among different brain structures in healthy rats. In addition, we discuss the main semiquantitative methodologies used to study SV2A because these techniques might represent powerful tools for evaluating synaptic changes associated with brain disorders. Our results showed that the SV2A expression levels differed among the analyzed structures, and a positive correlation between the SV2A mRNA copy number and protein level was observed by Western blot. In addition, immunohistochemistry demonstrated slight but consistent asymmetrical SV2A levels in different laminated structures, and SV2A expression was increased by up to 40% in some specific layers compared to that in others. Finally, triple immunofluorescence revealed strong SV2A colocalization with GABAergic terminals, mainly around the principal cells, suggesting that SV2A primarily participates in this inhibitory system in different rat brain structures. Although the SV2A protein is considered a good candidate marker of synaptic density, our data show that changes in its expression in pathological processes must be viewed as not only increased or decreased synapse numbers but also in light of the type of neurotransmission being affected.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.