-
Am. J. Physiol. Heart Circ. Physiol. · Aug 2004
Hyperoxia causes oxygen free radical-mediated membrane injury and alters myocardial function and hemodynamics in the newborn.
- K S Bandali, M P Belanger, and C Wittnich.
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5G 1L5.
- Am. J. Physiol. Heart Circ. Physiol. 2004 Aug 1; 287 (2): H553-9.
AbstractNewborn children can be exposed to high oxygen levels (hyperoxia) for hours to days during their medical and/or surgical management, and they also can have poor myocardial function and hemodynamics. Whether hyperoxia alone can compromise myocardial function and hemodynamics in the newborn and whether this is associated with oxygen free radical release that overwhelms naturally occurring antioxidant enzymes leading to myocardial membrane injury was the focus of this study. Yorkshire piglets were anesthetized with pentobarbital sodium (65 mg/kg), intubated, and ventilated to normoxia. Once normal blood gases were confirmed, animals were randomly allocated to either 5 h of normoxia [arterial Po(2) (Pa(O(2))) = 83 +/- 5 mmHg, n = 4] or hyperoxia (Pa(O(2)) = 422 +/- 33 mmHg, n = 6), and myocardial functional and hemodynamic assessments were made hourly. Left ventricular (LV) biopsies were taken for measurements of antioxidant enzyme activities [superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT)] and malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) as an indicator of oxygen free radical-mediated membrane injury. Hyperoxic piglets suffered significant reductions in contractility (P < 0.05), systolic blood pressure (P < 0.03), and mean arterial blood pressure (P < 0.05). Significant increases were seen in heart rate (P < 0.05), whereas a significant 11% (P < 0.05) and 61% (P < 0.001) reduction was seen in LV SOD and GPx activities, respectively, after 5 h of hyperoxia. Finally, MDA and 4-HNE levels were significantly elevated by 45% and 38% (P < 0.001 and P = 0.02), respectively, in piglets exposed to hyperoxia. Thus, in the newborn, hyperoxia triggers oxygen free radical-mediated membrane injury together with an inability of the newborn heart to upregulate its antioxidant enzyme defenses while impairing myocardial function and hemodynamics.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.