American journal of physiology. Heart and circulatory physiology
-
Am. J. Physiol. Heart Circ. Physiol. · Aug 2004
Hyperoxia causes oxygen free radical-mediated membrane injury and alters myocardial function and hemodynamics in the newborn.
Newborn children can be exposed to high oxygen levels (hyperoxia) for hours to days during their medical and/or surgical management, and they also can have poor myocardial function and hemodynamics. Whether hyperoxia alone can compromise myocardial function and hemodynamics in the newborn and whether this is associated with oxygen free radical release that overwhelms naturally occurring antioxidant enzymes leading to myocardial membrane injury was the focus of this study. Yorkshire piglets were anesthetized with pentobarbital sodium (65 mg/kg), intubated, and ventilated to normoxia. ⋯ Significant increases were seen in heart rate (P < 0.05), whereas a significant 11% (P < 0.05) and 61% (P < 0.001) reduction was seen in LV SOD and GPx activities, respectively, after 5 h of hyperoxia. Finally, MDA and 4-HNE levels were significantly elevated by 45% and 38% (P < 0.001 and P = 0.02), respectively, in piglets exposed to hyperoxia. Thus, in the newborn, hyperoxia triggers oxygen free radical-mediated membrane injury together with an inability of the newborn heart to upregulate its antioxidant enzyme defenses while impairing myocardial function and hemodynamics.