• Neuroscience · Jan 2014

    Differential S-nitrosylation of proteins in Alzheimer's disease.

    • S Zahid, R Khan, M Oellerich, N Ahmed, and A R Asif.
    • Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan; Department of Clinical Chemistry, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany.
    • Neuroscience. 2014 Jan 3; 256: 126-36.

    AbstractNumerous studies have provided evidence regarding the involvement of protein S-nitrosylation in the progression of Alzheimer's disease (AD) pathology and its implication in the formation and accumulation of misfolded protein aggregates. The identification of S-nitrosylated proteins can be a major step toward the understanding of mechanisms leading to neuronal degeneration. The present study targeted S-nitrosylated proteins in AD hippocampus, substantia nigra and cortex using the following work-flow that combines S-nitrosothiol-specific antibody detection, classical biotin switch method labeled with fluorescence dye followed by electrospray ionization quadrupole time of flight tandem MS (ESI-QTOF MS/MS) identification. Endogenous nitrosocysteines were identified in 45 proteins, mainly involved in metabolism, signaling pathways, apoptosis and redox regulation as assigned by REACTOME and KEGG pathway database analysis. Superoxide dismutase (SOD2) [Mn], fructose-bisphosphate aldolase C (ALDOC) and voltage-dependent anion-selective channel protein 2 (VDAC2) showed differential S-nitrosylation signal, not previously reported in AD regions. Extensive neuronal atrophy with increased protein S-nitrosylation in AD regions is also evident from immunofluorescence studies using S-nitrosocysteine antibody. A number of plausible cysteine modification sites were predicted via Group-based Prediction System-S-nitrosothiols (GPS-SNO) 1.0 while STRING 8.3 analysis revealed functional annotations in the modified proteins. The findings are helpful in characterization of functional abnormalities and may facilitate the understanding of molecular mechanisms and biological function of S-nitrosylation in AD pathology. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…