-
- Yajing Zhang, Linda Chang, Can Ceritoglu, Jon Skranes, Thomas Ernst, Susumu Mori, Michael I Miller, and Kenichi Oishi.
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Neuroimage. 2014 Nov 1; 101: 256-67.
AbstractAtlas-based image analysis (ABA), in which an anatomical "parcellation map" is used for parcel-by-parcel image quantification, is widely used to analyze anatomical and functional changes related to brain development, aging, and various diseases. The parcellation maps are often created based on common MRI templates, which allow users to transform the template to target images, or vice versa, to perform parcel-by-parcel statistics, and report the scientific findings based on common anatomical parcels. The use of a study-specific template, which represents the anatomical features of the study population better than common templates, is preferable for accurate anatomical labeling; however, the creation of a parcellation map for a study-specific template is extremely labor intensive, and the definitions of anatomical boundaries are not necessarily compatible with those of the common template. In this study, we employed a volume-based template estimation (VTE) method to create a neonatal brain template customized to a study population, while keeping the anatomical parcellation identical to that of a common MRI atlas. The VTE was used to morph the standardized parcellation map of the JHU-neonate-SS atlas to capture the anatomical features of a study population. The resultant "study-customized" T1-weighted and diffusion tensor imaging (DTI) template, with three-dimensional anatomical parcellation that defined 122 brain regions, was compared with the JHU-neonate-SS atlas, in terms of the registration accuracy. A pronounced increase in the accuracy of cortical parcellation and superior tensor alignment were observed when the customized template was used. With the customized atlas-based analysis, the fractional anisotropy (FA) detected closely approximated the manual measurements. This tool provides a solution for achieving normalization-based measurements with increased accuracy, while reporting scientific findings in a consistent framework. Copyright © 2014 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.