-
- Wessam Al-Salman, Yan Li, and Peng Wen.
- School of Agricultural, Computational and Environmental Sciences, University of Southern Queensland, Australia; College of Education for Pure Science, University of Thi-Qar, Iraq. Electronic address: WessamAbbasHamed.Al-Salman@usq.edu.au.
- Neuroscience. 2019 Dec 1; 422: 119-133.
AbstractK-complexes are important transient bio-signal waveforms in sleep stage 2. Detecting k-complexes visually requires a highly qualified expert. In this study, an efficient method for detecting k-complexes from electroencephalogram (EEG) signals based on fractal and frequency features coupled with an ensemble model of three classifiers is presented. EEG signals are first partitioned into segments, using a sliding window technique. Then, each EEG segment is decomposed using a dual-tree complex wavelet transform (DT-CWT) to a set of real and imaginary parts. A total of 10 sub-bands are used based on four levels of decomposition, and the high sub-bands are considered in this research for feature extraction. Fractal and frequency features based on DT-CWT and Higuchi's algorithm are pulled out from each sub-band and then forwarded to an ensemble classifier to detect k-complexes. A twelve-feature set is finally used to detect the sleep EEG characteristics using the ensemble model. The ensemble model is designed using a combination of three classification techniques including a least square support vector machine (LS-SVM), k-means and Naïve Bayes. The proposed method for the detection of the k-complexes achieves an average accuracy rate of 97.3 %. The results from the ensemble classifier were compared with those by individual classifiers. Comparisons were also made with existing k-complexes detection approaches for which the same datasets were used. The results demonstrate that the proposed approach is efficient in identifying the k-complexes in EEG signals; it yields optimal results with a window size 0.5 s. It can be an effective tool for sleep stages classification and can be useful for doctors and neurologists for diagnosing sleep disorders.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.