• Neuroscience · Feb 2013

    Transcriptional expression of voltage-gated Na⁺ and voltage-independent K⁺ channels in the developing rat superficial dorsal horn.

    • M L Blankenship, D E Coyle, and M L Baccei.
    • Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA. blankemh@brandeis.edu
    • Neuroscience. 2013 Feb 12;231:305-14.

    AbstractNeurons within the superficial dorsal horn (SDH) of the rodent spinal cord exhibit distinct firing properties during early life. While this may reflect a unique combination of voltage-gated Na(+) (Na(v)) and voltage-independent (i.e. "leak'') K(+) channels which strongly influence neuronal excitability across the CNS, surprisingly little is known about which genes encoding for Na(v) and leak K(+) channels are expressed within developing spinal pain circuits. The goal of the present study was therefore to characterize the transcriptional expression of these channels within the rat SDH at postnatal days (P) 3, 10, 21 or adulthood using quantitative real-time polymerase chain reaction. The results demonstrate that Na(v) isoforms are developmentally regulated at the mRNA level in a subtype-specific manner, as Na(v)1.2 and Na(v)1.3 decreased significantly from P3 to adulthood, while Na(v)1.1 was up-regulated during this period. The data also indicate selective, age-dependent changes in the mRNA expression of two-pore domain (K(2P)) K(+) channels, as TWIK-related acid-sensitive K(+) channels TASK-1 (KCNK3) and TASK-3 (KCNK9) were down-regulated during postnatal development in the absence of any changes in the tandem of pore domains in a weak inward rectifying K(+) channel (TWIK) isoforms examined (KCNK1 and KCNK6). In addition, a developmental shift occurred within the TREK subfamily due to decreased TREK-2 (KCNK10) mRNA within the mature SDH. Meanwhile, G-protein-coupled inward rectifying K(+) channels (K(ir)3.1 and K(ir)3.2) were expressed in the SDH at mature levels from birth. Overall, the results suggest that the transcription of ion channel genes occurs in a highly age-dependent manner within the SDH, raising the possibility that manipulating the expression or function of ion channels which are preferentially expressed within immature nociceptive networks could yield novel approaches to relieving pain in infants and children.Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.