• Neuroscience · Feb 2013

    Mitochondrial bioenergetic deficits in the hippocampi of rats with chronic ischemia-induced vascular dementia.

    • J Du, M Ma, Q Zhao, L Fang, J Chang, Y Wang, R Fei, and X Song.
    • Department of Vascular Surgery, China-Japan Union Hospital, No. 829 Xinmin Street, ChaoYang District, Jilin University, Changchun 130021, Jilin Province, People's Republic of China. djs3043@126.com
    • Neuroscience. 2013 Feb 12;231:345-52.

    AbstractVascular dementia (VD), defined as a loss of memory and cognitive function resulting from vascular lesions in the brain, is the second-most-common cause of dementia in the elderly, after Alzheimer's disease. In recent years, research has focused on the pathogenesis of VD, and mitochondrial bioenergetic deficits have been suggested to contribute to VD onset. To further investigate the role of mitochondria in VD, we used a rat model of VD, which involved permanent bilateral occlusion of the common carotid arteries (with a 1-week interval between artery occlusion to avoid an abrupt reduction in cerebral blood flow) leading to chronic cerebral hypoperfusion. Prior to occlusion, male Wistar rats underwent 7 days of Morris water maze training. Only animals that could swim and passed the Morris water maze test were chosen for the study. After 5 days of Morris water maze training, mitochondria from the hippocampi of rats, which were randomly selected from animals that could complete the Morris water maze test, were isolated for functional assessment. Mitochondria isolated from the hippocampi of rats from the ischemia group had decreased pyruvate dehydrogenase protein levels, and increased oxidative stress, as manifested by increased hydrogen peroxide production. The ischemia group mitochondria also exhibited decreased respiration coupled to decreased expression and activity of the electron transport chain complex IV (cytochrome c oxidase). These results indicate that the mitochondrial oxidative metabolism is inhibited in the hippocampi of rats following chronic ischemia-induced VD. As the mitochondrial oxidative metabolism deficits, namely mitochondrial bioenergetic deficits directly affect the functions of neurons, it may contribute to VD onset.Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…