• Neuroscience · Jan 2020

    Regulation of Alzheimer's disease-associated proteins during the course of epileptogenesis: differential proteomic analysis in a rat model.

    • Eva-Lotta von Rüden, Christina Zellinger, Julia Gedon, Andreas Walker, Vera Bierling, Cornelia A Deeg, Stefanie M Hauck, and Heidrun Potschka.
    • Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
    • Neuroscience. 2020 Jan 1; 424: 102-120.

    AbstractClinical evidence and pathological studies suggest a bidirectional link between temporal lobe epilepsy and Alzheimer's disease (AD). Data analysis from omic studies offers an excellent opportunity to identify the overlap in molecular alterations between the two pathologies. We have subjected proteomic data sets from a rat model of epileptogenesis to a bioinformatics analysis focused on proteins functionally linked with AD. The data sets have been obtained for hippocampus (HC) and parahippocampal cortex samples collected during the course of epileptogenesis. Our study confirmed a relevant dysregulation of proteins linked with Alzheimer pathogenesis. When comparing the two brain areas, a more prominent regulation was evident in parahippocampal cortex samples as compared to the HC. Dysregulated protein groups comprised those affecting mitochondrial function and calcium homeostasis. Differentially expressed mitochondrial proteins included proteins of the mitochondrial complexes I, III, IV, and V as well as of the accessory subunit of complex I. The analysis also revealed a regulation of the microtubule associated protein Tau in parahippocampal cortex tissue during the latency phase. This was further confirmed by immunohistochemistry. Moreover, we demonstrated a complex epileptogenesis-associated dysregulation of proteins involved in amyloid β processing and its regulation. Among others, the amyloid precursor protein and the α-secretase alpha disintegrin metalloproteinase 17 were included. Our analysis revealed a relevant regulation of key proteins known to be associated with AD pathogenesis. The analysis provides a comprehensive overview of shared molecular alterations characterizing epilepsy development and manifestation as well as AD development and progression.Copyright © 2019. Published by Elsevier Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.