• European radiology · Feb 2019

    Association of paraspinal muscle water-fat MRI-based measurements with isometric strength measurements.

    • Sarah Schlaeger, Stephanie Inhuber, Alexander Rohrmeier, Michael Dieckmeyer, Friedemann Freitag, Elisabeth Klupp, Dominik Weidlich, Georg Feuerriegel, Florian Kreuzpointner, Ansgar Schwirtz, Ernst J Rummeny, Claus Zimmer, Jan S Kirschke, Dimitrios C Karampinos, and Thomas Baum.
    • Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany. sarah.schlaeger@tum.de.
    • Eur Radiol. 2019 Feb 1; 29 (2): 599-608.

    ObjectivesChemical shift encoding-based water-fat MRI derived proton density fat fraction (PDFF) of the paraspinal muscles has been emerging as a surrogate marker in subjects with sarcopenia, lower back pain, injuries and neuromuscular disorders. The present study investigates the performance of paraspinal muscle PDFF and cross-sectional area (CSA) in predicting isometric muscle strength.MethodsTwenty-six healthy subjects (57.7% women; age: 30 ± 6 years) underwent 3T axial MRI of the lumbar spine using a six-echo 3D spoiled gradient echo sequence for chemical shift encoding-based water-fat separation. Erector spinae and psoas muscles were segmented bilaterally from L2 level to L5 level to determine CSA and PDFF. Muscle flexion and extension maximum isometric torque values [Nm] at the back were measured with an isokinetic dynamometer.ResultsSignificant correlations between CSA and muscle strength measurements were observed for erector spinae muscle CSA (r = 0.40; p = 0.044) and psoas muscle CSA (r = 0.61; p = 0.001) with relative flexion strength. Erector spinae muscle PDFF correlated significantly with relative muscle strength (extension: r = -0.51; p = 0.008; flexion: r = -0.54; p = 0.005). Erector spinae muscle PDFF, but not CSA, remained a statistically significant (p < 0.05) predictor of relative extensor strength in multivariate regression models (R2adj = 0.34; p = 0.002).ConclusionsPDFF measurements improved the prediction of paraspinal muscle strength beyond CSA. Therefore, chemical shift encoding-based water-fat MRI may be used to detect subtle changes in the paraspinal muscle composition.Key Points• We investigated the association of paraspinal muscle fat fraction based on chemical shift encoding-based water-fat MRI with isometric strength measurements in healthy subjects. • Erector spinae muscle PDFF correlated significantly with relative muscle strength. • PDFF measurements improved prediction of paraspinal muscle strength beyond CSA.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…