• Neuroscience · Feb 2020

    Green model to adapt classical conditioning learning in the hippocampus.

    • Mustafa Khalid, Jun Wu, M Ali Taghreed T Electrical Engineering Department, University of Baghdad, Baghdad 10071, Iraq., Ahmed A Moustafa, Qiuguo Zhu, and Rong Xiong.
    • The State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China; Electrical Engineering Department, University of Baghdad, Baghdad 10071, Iraq.
    • Neuroscience. 2020 Feb 1; 426: 201-219.

    AbstractCompared with the biological paradigms of classical conditioning, non-adaptive computational models are not capable of realistically simulating the biological behavioural functions of the hippocampal regions, because of their implausible requirement for a large number of learning trials, which can be on the order of hundreds. Additionally, these models did not attain a unified, final stable state even after hundreds of learning trials. Conversely, the output response has a different threshold for similar tasks in various models with prolonged transient response of unspecified status via the training or even testing phases. Accordingly, a green model is a combination of adaptive neuro-computational hippocampal and cortical models that is proposed by adaptively updating the whole weights in all layers for both intact networks and lesion networks using instar and outstar learning rules with adaptive resonance theory (ART). The green model sustains and expands the classical conditioning biological paradigms of the non-adaptive models. The model also overcomes the irregular output response behaviour by using the proposed feature of adaptivity. Further, the model successfully simulates the hippocampal regions without passing the final output response back to the whole network, which is considered to be biologically implausible. The results of the Green model showed a significant improvement confirmed by empirical studies of different tasks. In addition, the results indicated that the model outperforms the previously published models. All the obtained results successfully and quickly attained a stable, desired final state (with a unified concluding state of either "1" or "0") with a significantly shorter transient duration.Copyright © 2019 IBRO. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.