• Neuroscience · Feb 2020

    K+ accumulation and clearance in the calyx synaptic cleft of Type I mouse vestibular hair cells.

    • P Spaiardi, E Tavazzani, M Manca, G Russo, I Prigioni, G Biella, R Giunta, S L Johnson, W Marcotti, and S Masetto.
    • Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
    • Neuroscience. 2020 Feb 1; 426: 69-86.

    AbstractVestibular organs of Amniotes contain two types of sensory cells, named Type I and Type II hair cells. While Type II hair cells are contacted by several small bouton nerve terminals, Type I hair cells receive a giant terminal, called a calyx, which encloses their basolateral membrane almost completely. Both hair cell types release glutamate, which depolarizes the afferent terminal by binding to AMPA post-synaptic receptors. However, there is evidence that non-vesicular signal transmission also occurs at the Type I hair cell-calyx synapse, possibly involving direct depolarization of the calyx by K+ exiting the hair cell. To better investigate this aspect, we performed whole-cell patch-clamp recordings from mouse Type I hair cells or their associated calyx. We found that [K+] in the calyceal synaptic cleft is elevated at rest relative to the interstitial (extracellular) solution and can increase or decrease during hair cell depolarization or repolarization, respectively. The change in [K+] was primarily driven by GK,L, the low-voltage-activated, non-inactivating K+ conductance specifically expressed by Type I hair cells. Simple diffusion of K+ between the cleft and the extracellular compartment appeared substantially restricted by the calyx inner membrane, with the ion channels and active transporters playing a crucial role in regulating intercellular [K+]. Calyx recordings were consistent with K+ leaving the synaptic cleft through postsynaptic voltage-gated K+ channels involving KV1 and KV7 subunits. The above scenario is consistent with direct depolarization and hyperpolarization of the calyx membrane potential by intercellular K+.Copyright © 2019 The Author(s). Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.