• Neuroscience · Mar 2020

    Characterizing the mechanical properties of ectopic axonal receptive fields in inflamed nerves and following axonal transport disruption.

    • George Goodwin, Geoffrey M Bove, Bryony Dayment, and Andrew Dilley.
    • Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK.
    • Neuroscience. 2020 Mar 1; 429: 10-22.

    AbstractRadiating pain is a significant feature of chronic musculoskeletal pain conditions such as radiculopathies, repetitive motion disorders and whiplash associated disorders. It is reported to be caused by the development of mechanically-sensitive ectopic receptive fields along intact nociceptor axons at sites of peripheral neuroinflammation (neuritis). Since inflammation disrupts axonal transport, we have hypothesised that anterogradely-transported mechanically sensitive ion channels accumulate at the site of disruption, which leads to axonal mechanical sensitivity (AMS). In this study, we have characterised the mechanical properties of the ectopic axonal receptive fields in the rat and have examined the contribution of mechanically sensitive ion channels to the development of AMS following neuritis and vinblastine-induced axonal transport disruption. In both models, there was a positive force-discharge relationship and mechanical thresholds were low (∼9 mN/mm2). All responses were attenuated by Ruthenium Red and FM1-43, which block mechanically sensitive ion channels. In both models, the transport of TRPV1 and TRPA1 was disrupted, and intraneural injection of agonists of these channels caused responses in neurons with AMS following neuritis but not vinblastine treatment. In summary, these data support a role for mechanically sensitive ion channels in the development of AMS.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.