-
Brain research bulletin · May 2017
Neurogenic bladder dysfunction does not correlate with astrocyte and microglia activation produced by graded force in a contusion-induced spinal cord injury.
- Alvaro Munoz.
- Regenerative Medicine and Tissue Engineering Program, Houston Methodist Research Institute, and Department of Urology, Houston Methodist Hospital, Houston, TX, 77030, United States. Electronic address: AMunoz@HoustonMethodist.org.
- Brain Res. Bull. 2017 May 1; 131: 18-24.
AbstractRodent models for the study of neurogenic bladder dysfunction after spinal cord injury (SCI) are difficult to standardize, particularly when evaluating the specific contribution of the SCI to end-organ function. The purpose of this study was to evaluate the degree of bladder dysfunction associated with a highly reproducible, contusion-induced SCI in female rats. An infinite horizon impactor was used to create a contusion SCI with a magnitude of either 100 or 150 kDyne at the T8/T9 thoracic region of female Sprague-Dawley rats. Locomotor function, and the presence of astrocytes (positive regions for Glial Fibrillary Acidic Protein) and microglia (positive cells for the integrin CD11b) at the SCI site were determined at four weeks after SCI. Similarly, cystometric properties were characterized in urethane anesthetized rats at four weeks post-SCI. The significant increases in astrocyte and microglia in the T8/T9 region in all of the SCI animals did not correlate with locomotor impairment or bladder dysfunction. After performing the cystometric studies substantial differences were found in both SCI groups when compared to intact animals, specifically a high frequency of non-voiding contractions, different durations for intraluminal pressure-high frequency oscillations, intercontractile intervals, impaired micturition volumes, and estimated voiding efficiency. These results suggest that a contusion SCI can increase microglia and astrocyte activation without a strong association with bladder dysfunction. The present study will be important for precise considerations about correlating the intensity of an SCI with impairment outcomes at both locomotor or organ function levels.Copyright © 2017 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.