• J. Neurophysiol. · Jun 1988

    Responses of mitral/tufted cells to orthodromic and antidromic electrical stimulation in the olfactory bulb of the tiger salamander.

    • K A Hamilton and J S Kauer.
    • Department of Neurosurgery, Anatomy, New England Medical Center, Tufts Medical School, Boston, Massachusetts 02111.
    • J. Neurophysiol. 1988 Jun 1; 59 (6): 1736-55.

    Abstract1. Responses evoked by electrical stimulation of the olfactory nerve and olfactory tracts were analyzed in 46 output cells of the salamander olfactory bulb, in vivo. Labeling of several cells with horseradish peroxidase indicated that they were mitral and/or tufted neurons. The responses contained reproducible sequences of depolarizing and hyperpolarizing potentials, which changed with increases in stimulus intensity. 2. Stimulation of the nerve with intensities subthreshold for evoking spikes in the recorded cell resulted in a small depolarization followed by a period of hyperpolarization, during which spontaneous spikes were suppressed. With suprathreshold stimulus intensities, a single spike or often a burst of spikes was evoked, followed by a complex prolonged hyperpolarization. When full spikes were blocked by injecting hyperpolarizing current through the recording electrode, an excitatory postsynaptic potential (EPSP) with two major components and sometimes a fast prepotential were observed at the beginning of the response. Amplitudes of the EPSP and hyperpolarization increased with graded increases in stimulus intensity. In tests with paired stimulus volleys, spike generation was inhibited for at least 1 s and often for several seconds during the hyperpolarization. 3. Stimulation of the tracts with intensities subthreshold for evoking spikes in the recorded cell resulted in a complex prolonged hyperpolarization. With suprathreshold stimulus intensities, a single spike was evoked, followed by a similar period of hyperpolarization. When full spikes were blocked by injecting hyperpolarizing current through the recording electrode, a small antidromic spike, presumably generated in the axon or initial segment, was often observed. Amplitude of the hyperpolarization increased with graded increases in stimulus intensity. In tests with paired volleys, generation of a full antidromic spike was inhibited for a period that usually began 20-30 ms, following the spike evoked by the conditioning stimulus and lasted 100-500 ms. Full antidromic spikes were evoked prior to the period of inhibition and small antidromic spikes were evoked during the period. 4. The mean latencies of single evoked spikes or the first spikes of bursts decreased from 22 to 17 ms with increases in the intensity of nerve stimulation and from 7 to 6 ms with increases in the intensity of tract stimulation. Only decreases in orthodromic latency were significant at P less than or equal to 0.05, as determined by one-sided t tests between the means of responses subdivided according to response pattern and relative stimulus intensity.(ABSTRACT TRUNCATED AT 400 WORDS)

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.