• J. Neurol. Neurosurg. Psychiatr. · May 2020

    Comparative Study

    Differentiating tic electrophysiology from voluntary movement in the human thalamocortical circuit.

    • Jackson N Cagle, Michael S Okun, Enrico Opri, Stephanie Cernera, Rene Molina, Kelly D Foote, and Aysegul Gunduz.
    • J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA.
    • J. Neurol. Neurosurg. Psychiatr. 2020 May 1; 91 (5): 533-539.

    ObjectivesTourette syndrome is a neurodevelopmental disorder commonly associated with involuntary movements, or tics. We currently lack an ideal animal model for Tourette syndrome. In humans, clinical manifestation of tics cannot be captured via functional imaging due to motion artefacts and limited temporal resolution, and electrophysiological studies have been limited to the intraoperative environment. The goal of this study was to identify electrophysiological signals in the centromedian (CM) thalamic nucleus and primary motor (M1) cortex that differentiate tics from voluntary movements.MethodsThe data were collected as part of a larger National Institutes of Health-sponsored clinical trial. Four participants (two males, two females) underwent monthly clinical visits for collection of physiology for a total of 6 months. Participants were implanted with bilateral CM thalamic macroelectrodes and M1 subdural electrodes that were connected to two neurostimulators, both with sensing capabilities. MRI scans were performed preoperatively and CT scans postoperatively for localisation of electrodes. Electrophysiological recordings were collected at each visit from both the cortical and subcortical implants.ResultsRecordings collected from the CM thalamic nucleus revealed a low-frequency power (3-10 Hz) increase that was time-locked to the onset of involuntary tics but was not present during voluntary movements. Cortical recordings revealed beta power decrease in M1 that was present during tics and voluntary movements.ConclusionWe conclude that a human physiological signal was detected from the CM thalamus that differentiated tic from voluntary movement, and this physiological feature could potentially guide the development of neuromodulation therapies for Tourette syndrome that could use a closed-loop-based approach.© Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.