-
Visuospatial working memory capacity predicts the organization of acquired explicit motor sequences.
- J Bo and R D Seidler.
- Division of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA. jinbo@umich.edu
- J. Neurophysiol. 2009 Jun 1; 101 (6): 3116-25.
AbstractStudies have suggested that cognitive processes such as working memory and temporal control contribute to motor sequence learning. These processes engage overlapping brain regions with sequence learning, but concrete evidence has been lacking. In this study, we determined whether limits in visuospatial working memory capacity and temporal control abilities affect the temporal organization of explicitly acquired motor sequences. Participants performed an explicit sequence learning task, a visuospatial working memory task, and a continuous tapping timing task. We found that visuospatial working memory capacity, but not the CV from the timing task, correlated with the rate of motor sequence learning and the chunking pattern observed in the learned sequence. These results show that individual differences in short-term visuospatial working memory capacity, but not temporal control, predict the temporal structure of explicitly acquired motor sequences.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.