• Neuroscience · May 2020

    A role for PGC-1α in transcription and excitability of neocortical and hippocampal excitatory neurons.

    • L J McMeekin, A F Bartley, A S Bohannon, E W Adlaf, T van Groen, S M Boas, S N Fox, P J Detloff, D K Crossman, L S Overstreet-Wadiche, J J Hablitz, L E Dobrunz, and R M Cowell.
    • Department of Neuroscience, Drug Discovery Division at Southern Research, Birmingham, AL 35205, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
    • Neuroscience. 2020 May 21; 435: 73-94.

    AbstractThe transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a critical regulator of genes involved in neuronal metabolism, neurotransmission, and morphology. Reduced PGC-1α expression has been implicated in several neurological and psychiatric disorders. An understanding of PGC-1α's roles in different cell types will help determine the functional consequences of PGC-1α dysfunction and/or deficiency in disease. Reports from our laboratory and others suggest a critical role for PGC-1α in inhibitory neurons with high metabolic demand such as fast-spiking interneurons. Here, we document a previously unrecognized role for PGC-1α in maintenance of gene expression programs for synchronous neurotransmitter release, structure, and metabolism in neocortical and hippocampal excitatory neurons. Deletion of PGC-1α from these neurons caused ambulatory hyperactivity in response to a novel environment and enhanced glutamatergic transmission in neocortex and hippocampus, along with reductions in mRNA levels from several PGC-1α neuron-specific target genes. Given the potential role for a reduction in PGC-1α expression or activity in Huntington Disease (HD), we compared reductions in transcripts found in the neocortex and hippocampus of these mice to that of an HD knock-in model; few of these transcripts were reduced in this HD model. These data provide novel insight into the function of PGC-1α in glutamatergic neurons and suggest that it is required for the regulation of structural, neurosecretory, and metabolic genes in both glutamatergic neuron and fast-spiking interneuron populations in a region-specific manner. These findings should be considered when inferring the functional relevance of changes in PGC-1α gene expression in the context of disease.Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…