-
- Teresa Rocha, Simão Paredes, Paulo de Carvalho, and Jorge Henriques.
- Instituto Superior de Engenharia de Coimbra, Departamento de Engenharia Informática e de Sistemas, Coimbra, Portugal.
- Comput. Biol. Med. 2011 Oct 1; 41 (10): 881-90.
AbstractThis work proposes the application of neural network multi-models to the prediction of adverse acute hypotensive episodes (AHE) occurring in intensive care units (ICU). A generic methodology consisting of two phases is considered. In the first phase, a correlation analysis between the current blood pressure time signal and a collection of historical blood pressure templates is carried out. From this procedure the most similar signals are determined and the respective prediction neural models, previously trained, selected. Then, in a second phase, the multi-model structure is employed to predict the future evolution of current blood pressure signal, enabling to detect the occurrence of an AHE. The effectiveness of the methodology was validated in the context of the 10th PhysioNet/Computers in Cardiology Challenge-Predicting Acute Hypotensive Episodes, applied to a specific set of blood pressure signals, available in MIMIC-II database. A correct prediction of 10 out of 10 AHE for event 1 and of 37 out of 40 AHE for event 2 was achieved, corresponding to the best results of all entries in the two events of the challenge. The generalization capabilities of the strategy was confirmed by applying it to an extended dataset of blood pressure signals, also collected from the MIMIC-II database. A total of 2344 examples, selected from 311 blood pressure signals were tested, enabling to obtain a global sensitivity of 82.8% and a global specificity of 78.4%.Copyright © 2011 Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.