• Neuroscience · May 1993

    Review

    Molecular profile of reactive astrocytes--implications for their role in neurologic disease.

    • M Eddleston and L Mucke.
    • Department of Neuropharmacology, Scripps Research Institute.
    • Neuroscience. 1993 May 1; 54 (1): 153615-36.

    AbstractThe central nervous system responds to diverse neurologic injuries with a vigorous activation of astrocytes. While this phenomenon is found in many different species, its function is obscure. Understanding the molecular profile characteristic of reactive astrocytes should help define their function. The purpose of this review is to provide a summary of molecules whose levels of expression differentiate activated from resting astrocytes and to use the molecular profile of reactive astrocytes as the basis for speculations on the functions of these cells. At present, reactive astrocytosis is defined primarily as an increase in the number and size of cells expressing glial fibrillary acidic protein. In vivo, this increase in glial fibrillary acidic protein-positive cells reflects predominantly phenotypic changes of resident astroglia rather than migration or proliferation of such cells. Upon activation, astrocytes upmodulate the expression of a large number of molecules. From this molecular profile it becomes apparent that reactive astrocytes may benefit the injured nervous system by participating in diverse biological processes. For example, upregulation of proteases and protease inhibitors could help remodel the extracellular matrix, regulate the concentration of different proteins in the neuropil and clear up debris from degenerating cells. Cytokines are key mediators of immunity and inflammation and could play a critical role in the regulation of the blood-central nervous system interface. Neurotrophic factors, transporter molecules and enzymes involved in the metabolism of excitotoxic amino acids or in the antioxidant pathway may help protect neurons and other brain cells by controlling neurotoxin levels and contributing to homeostasis within the central nervous system. Therefore, an impairment of astroglial performance has the potential to exacerbate neuronal dysfunction. Based on the synopsis of studies presented, a number of issues become apparent that deserve a more extensive analysis. Among them are the relative contribution of microglia and astrocytes to early wound repair, the characterization of astroglial subpopulations, the specificity of the astroglial response in different diseases as well as the analysis of reactive astrocytes with techniques that can resolve fast physiologic processes. Differences between reactive astrocytes in vivo and primary astrocytes in culture are discussed and underline the need for the development and exploitation of models that will allow the analysis of reactive astrocytes in the intact organism.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.