-
Neuroimaging Clin. N. Am. · May 2020
ReviewMagnetoencephalography Signal Processing, Forward Modeling, Magnetoencephalography Inverse Source Imaging, and Coherence Analysis.
- Matti Hämäläinen, Mingxiong Huang, and Susan M Bowyer.
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA, USA.
- Neuroimaging Clin. N. Am. 2020 May 1; 30 (2): 125-143.
AbstractMagnetoencephalography (MEG) is a noninvasive functional imaging technique for the brain. MEG directly measures the magnetic signal due to neuronal activation in gray matter with high spatial localization accuracy. The first part of this article covers the overall concepts of MEG and the forward and inverse modeling techniques. It is followed by examples of analyzing evoked and resting-state MEG signals using a high-resolution MEG source imaging technique. Next, different techniques for connectivity and network analysis are reviewed with examples showing connectivity estimates from resting-state and epileptic activity.Copyright © 2020 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.