• Neuroscience · Jul 2020

    Brain structural connectivity predicts brain functional complexity: DTI derived centrality accounts for variance in fractal properties of fMRI signal.

    • Josh Neudorf, Chelsea Ekstrand, Shaylyn Kress, and Ron Borowsky.
    • Cognitive Neuroscience Lab, Department of Psychology, University of Saskatchewan, 9 Campus Dr., Saskatoon, SK S7N 5A5, Canada.
    • Neuroscience. 2020 Jul 1; 438: 1-8.

    AbstractThe complexity of brain activity has recently been investigated using the Hurst exponent (H), which describes the extent to which functional magnetic resonance imaging (fMRI) blood oxygen-level dependent (BOLD) activity is simple vs. complex. For example, research has demonstrated that fMRI activity is more complex before than after consumption of alcohol and during task than resting state. The measurement of H in fMRI is a novel method that requires the investigation of additional factors contributing to complexity. Graph theory metrics of centrality can assess how centrally important to the brain network each region is, based on diffusion tensor imaging (DTI) counts of probabilistic white matter (WM) tracts. DTI derived centrality was hypothesized to account for the complexity of functional activity, based on the supposition that more sources of information to integrate should result in more complex activity. FMRI BOLD complexity as measured by H was associated with five brain region centrality measures: degree, eigenvector, PageRank, current flow betweenness, and current flow closeness centrality. Multiple regression analyses demonstrated that eigenvector centrality was the most robust predictor of complexity, whereby greater centrality was associated with increased complexity (lower H). Regions known to be highly connected, including the thalamus and hippocampus, notably were among the highest in centrality and complexity. This research has led to a greater understanding of how brain region characteristics such as DTI centrality relate to the novel Hurst exponent approach for assessing brain activity complexity, and implications for future research that employ these measures are discussed.Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…