• J Trauma Acute Care Surg · Feb 2020

    Blood flow of the venous system during resuscitative endovascular balloon occlusion of the aorta: Noninvasive evaluation using phase contrast magnetic resonance imaging.

    • Yoshimitsu Izawa, Shuji Hishikawa, Yosuke Matsumura, Hiroyasu Nakamura, Hideharu Sugimoto, and Takashi Mato.
    • From the Department of Emergency and Critical Care Medicine, Jichi Medical University, Shimotsuke (Y.I., T.M.), Tochigi, Japan; Center for Development of Advanced Medical Technology, Jichi Medical University (S.H.), Shimotsuke, Tochigi, Japan; Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine (Y.M.), Chiba, Japan; and Department of Radiology, Jichi Medical University (H.S., H.N.), Shimotsuke, Tochigi, Japan.
    • J Trauma Acute Care Surg. 2020 Feb 1; 88 (2): 305-309.

    BackgroundResuscitative endovascular balloon occlusion of the aorta (REBOA) is a viable resuscitation approach for a subdiaphragmatic injury that can regulate arterial blood flow. On the other hand, the evaluation of venous or portal venous blood flow during REBOA remains insufficient because invasive cannulation or exposure of the vessel may affect the blood flow, and Doppler echography is highly operator-dependent. However, phase contrast magnetic resonance imaging has enabled accurate evaluation and noninvasive measurement. This study aimed to investigate the change of venous and portal venous blood flow during REBOA in a porcine model.MethodsSeven pigs were anesthetized, and a REBOA catheter was placed. The blood flows of the inferior vena cava (IVC), hepatic vein (HV), portal vein (PV), and superior vena cava (SVC) were measured using phase contrast magnetic resonance imaging, in both the balloon deflated (no-REBOA) and fully balloon inflated (REBOA) states. Mean arterial pressure (MAP), central venous pressure, cardiac index, and systemic vascular resistance index were measured.ResultsThe blood flows of the suprahepatic, infrahepatic, and distal IVC, HV, and PV in the no-REBOA state were 1.40 ± 0.36 L·min, 0.94 ± 0.16 L·min, 0.50 ± 0.19 L·min, 0.060 ± 0.018 L·min, and 0.32 ± 0.091 L·min, respectively. The blood flow of each section in the REBOA condition was significantly decreased at 0.41 ± 0.078 (33% of baseline), 0.15 ± 0.13 (15%), 0.043 ± 0.034 (9%), 0.029 ± 0.017 (37%), and 0.070 ± 0.034 L·min (21%), respectively. The blood flow of the SVC increased significantly in the REBOA condition (1.4 ± 0.63 L·min vs. 0.53 ± 0.14 L·min [257%]). Mean arterial pressure, central venous pressure, cardiac index, and systemic vascular resistance index were significantly increased after REBOA inflation.ConclusionResuscitative endovascular balloon occlusion of the aorta decreased blood flows of the IVC, HV, and PV and increased blood flow of the SVC. This result could be explained by the collateral flow from the lower body to the SVC. A better understanding of the effect of REBOA on the venous and portal venous systems may help control liver injury.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.