-
- Zachary Galliger, Caleb D Vogt, and Angela Panoskaltsis-Mortari.
- University of Minnesota, Department of Pediatrics, Minneapolis, Minnesota.
- Transl Res. 2019 Sep 1; 211: 19-34.
AbstractThree-dimensional bioprinting has been gaining attention as a potential method for creating biological tissues, supplementing the current arsenal of tissue engineering techniques. 3D bioprinting raises the possibility of reproducibly creating complex macro- and microscale architectures using multiple different cell types. This is promising for creation of multilayered hollow organs, which has been challenging using more traditional tissue engineering techniques. In this review, the state of the field in bioprinting of epithelialized hollow and tubular organs is discussed. Most of the progress for the pulmonary system has been restricted to the trachea. Due to the gross structural similarities and common engineering challenges when creating any epithelialized hollow organ, this review also covers current progress in printing within the gastrointestinal and genitourinary systems, as well as applications of traditional plastic printing in engineering these tissues.Copyright © 2019 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.