Neuromolecular medicine
-
Neuromolecular medicine · Sep 2014
Case ReportsMutation analysis of MFN2, GJB1, MPZ and PMP22 in Italian patients with axonal Charcot-Marie-Tooth disease.
Charcot-Marie-Tooth (CMT) diseases include a group of clinically heterogeneous inherited neuropathies subdivided into demyelinating (CMT1), axonal (CMT2) and intermediate CMT forms. CMTs are associated with different genes, although mutations in some of these genes may cause both clinical pictures. To date, more than 50 CMT genes have been identified, but more than half of the cases are due to mutations in MFN2, MPZ, GJB1 and PMP22. ⋯ Two patients showed rearrangements in the PMP22 gene, which is commonly associated with CMT1 or HNPP phenotypes thus usually not tested in CMT2 patients. By including this gene in the analysis, we reached a molecular diagnosis rate of 39.5 %, which is one of the highest reported in the literature. Our findings confirm the MFN2 gene as the most common cause of CMT2 and suggest that PMP22 rearrangements should be considered in the molecular diagnosis of CMT2 patients.
-
Neuromolecular medicine · Sep 2014
Endothelial activation and chemoattractant expression are early processes in isolated blast brain injury.
Blast injuries are an increasing problem in military conflicts and terrorist incidents. Blast-induced traumatic brain injury has risen to prominence and represents a specific form of primary brain injury, with sufficiently different physical attributes (and possibly biological consequences) to be classified separately. There is increasing interest in the role of blast in initiating inflammatory responses, which may be linked to the pathological processes seen clinically. ⋯ Brain injury is usually accompanied by pathological neuro-inflammation. This study shows that blast brain injury is no exception, and the data provide important mechanistic clues regarding the drivers of such inflammation. Whilst this effect alone is unlikely to be responsible for the totality of consequences of blast brain injury, it suggests a mechanism that may be priming the cerebral inflammatory response and rendering cerebral tissue more susceptible to the deleterious effects of systemic inflammatory reactions.