IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · Jun 1997
Design of a recognition system to predict movement during anesthesia.
The need for a reliable method of predicting movement during anesthesia has existed since the introduction of anesthesia. This paper proposes a recognition system, based on the autoregressive (AR) modeling and neural network analysis of the electroencephalograph (EEG) signals, to predict movement following surgical stimulation. The input to the neural network will be the AR parameters, the hemodynamic parameters blood pressure (BP) and heart rate (HR), and the anesthetic concentration in terms of the minimum alveolar concentration (MAC). ⋯ When both the measures were combined, the recognition rate rose to greater than 92%. When the anesthetic concentration was added as an input the network could be considerably simplified without sacrificing classification accuracy. This recognition system shows the feasibility of using the EEG signals for movement during anesthesia.