IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · Mar 2006
Motion artifact reduction in photoplethysmography using independent component analysis.
Removing the motion artifacts from measured photoplethysmography (PPG) signals is one of the important issues to be tackled for the accurate measurement of arterial oxygen saturation during movement. In this paper, the motion artifacts were reduced by exploiting the quasi-periodicity of the PPG signal and the independence between the PPG and the motion artifact signals. The combination of independent component analysis and block interleaving with low-pass filtering can reduce the motion artifacts under the condition of general dual-wavelength measurement. Experiments with synthetic and real data were performed to demonstrate the efficacy of the proposed algorithm.
-
Beamspace methods are applied to EEG/MEG source localization problems in this paper. Beamspace processing involves passing the data through a linear transformation that reduces the data dimension prior to applying a desired statistical signal processing algorithm. This process generally reduces the data requirements of the subsequent algorithm. ⋯ The performance improvement offered by the beamspace approach with limited data is demonstrated by bootstrapping somatosensory data to evaluate the variability of the source location estimates obtained with each algorithm. The quantitative benefits of beamspace processing depend on the algorithm, signal to noise ratio, and amount of data. Dramatic performance improvements are obtained in scenarios with low signal to noise ratio and a small number of independent data samples.
-
IEEE Trans Biomed Eng · Mar 2006
Magnetic resonance compatibility of multichannel silicon microelectrode systems for neural recording and stimulation: design criteria, tests, and recommendations.
Magnetic resonance (MR) compatibility of biomedical implants and devices represents a challenge for designers and potential risks for users. This paper addresses these problems and presents the first MR-compatible multichannel silicon chronic microelectrode system, used for recording and electrical stimulation of the central nervous system for animal models. A standard chronic assembly, from the Center for Neural Communication Technology at the University of Michigan, was tested on a 2 Tesla magnet to detect forces, heating, and image distortions, and modified to minimize or eliminate susceptibility artifacts, tissue damage, and electrode displacement, maintaining good image quality and safety to the animals. ⋯ The final selection of this part was based on MR-compatibility, biocompatibility, durability, and mechanical and chemical stability. The required adaptor to interconnect the MR-compatible microelectrode with standard data acquisition systems was also designed and fabricated. The final design is fully MR-compatible and has been successfully tested on guinea pigs.
-
IEEE Trans Biomed Eng · Feb 2006
Microfabricated cylindrical multielectrodes for neural stimulation.
The effects of spinal cord injuries are likely to be ameliorated with the help of functional electrical stimulation of the spinal cord, a technique that may benefit from a new style of electrode: the cylindrical multielectrode. This paper describes the specifications for, fabrication techniques for, and in vitro evaluation of cylindrical multielectrodes. ⋯ The charge delivery capacity was determined by testing with safe (< or = 0.6 mC/cm2) and damaging levels (> or = 0.8 mC/cm2) of charge density. The results of these tests suggest that this electrode design could be used to stimulate neurons in the ventral horn of the spinal cord.
-
IEEE Trans Biomed Eng · Feb 2006
Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes.
The use of potential biasing and biphasic, asymmetric current pulse waveforms to maximize the charge-injection capacity of activated iridium oxide (AIROF) microelectrodes used for neural stimulation is described. The waveforms retain overall zero net charge for the biphasic pulse, but employ an asymmetry in the current and pulse widths of each phase, with the second phase delivered at a lower current density for a longer period of time than the leading phase. ⋯ For anodal-first pulsing, a maximum charge capacity of 9.6 mC/cm2 was obtained with an asymmetry of 1:3 at an 0.1-V bias. These measurements were made in vitro in carbonate-buffered saline using microelectrodes with a 2000 microm2 surface area.