IEEE transactions on bio-medical engineering
-
The "hemodynamic inverse problem" is the determination of arterial system properties from pressures and flows measured at the entrance of an arterial system. Conventionally, investigators fit reduced arterial system models to data, and the resulting model parameters represent putative arterial properties. However, no unique solution to the inverse problem exists-an infinite number of arterial system topologies result in the same input impedance (Zin) and, therefore, the same pressure and flow. ⋯ We present a novel method to determine the relative contribution of Zo, Ctot, Rtot and arterial topology/reflection to Zin without assuming a particular reduced model. This method is tested with a large-scale distributed model of the arterial system, and is applied to illustrative cases of measured pressure and flow. This work, thus, lays the theoretical foundation for determining the arterial properties responsible for increased pulse pressure with age and various arterial system pathologies.
-
Insulin sensitivity is a crucial parameter of glucose metabolism. The standard measures of insulin sensitivity obtained by an euglycaemic hyperinsulinaemic clamp, Si(clamp), or by the minimal model (MM), SI, do not account for the dynamics of insulin action, i.e., how fast or slow insulin action reaches its plateau value. ⋯ In this paper we formally define a new insulin sensitivity index which also incorporates information on the dynamics of insulin action, SD(I), show its properties, and exemplify how it can be measured both with the clamp and the MM method. Then, by resorting to real and synthetic data, we show both in IVGTT MM and clamp studies why this new index SD(I) offers, in comparison with SI, a more comprehensive picture of the control of insulin on glucose.
-
IEEE Trans Biomed Eng · Mar 2006
Magnetic resonance compatibility of multichannel silicon microelectrode systems for neural recording and stimulation: design criteria, tests, and recommendations.
Magnetic resonance (MR) compatibility of biomedical implants and devices represents a challenge for designers and potential risks for users. This paper addresses these problems and presents the first MR-compatible multichannel silicon chronic microelectrode system, used for recording and electrical stimulation of the central nervous system for animal models. A standard chronic assembly, from the Center for Neural Communication Technology at the University of Michigan, was tested on a 2 Tesla magnet to detect forces, heating, and image distortions, and modified to minimize or eliminate susceptibility artifacts, tissue damage, and electrode displacement, maintaining good image quality and safety to the animals. ⋯ The final selection of this part was based on MR-compatibility, biocompatibility, durability, and mechanical and chemical stability. The required adaptor to interconnect the MR-compatible microelectrode with standard data acquisition systems was also designed and fabricated. The final design is fully MR-compatible and has been successfully tested on guinea pigs.
-
IEEE Trans Biomed Eng · Feb 2006
Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes.
The use of potential biasing and biphasic, asymmetric current pulse waveforms to maximize the charge-injection capacity of activated iridium oxide (AIROF) microelectrodes used for neural stimulation is described. The waveforms retain overall zero net charge for the biphasic pulse, but employ an asymmetry in the current and pulse widths of each phase, with the second phase delivered at a lower current density for a longer period of time than the leading phase. ⋯ For anodal-first pulsing, a maximum charge capacity of 9.6 mC/cm2 was obtained with an asymmetry of 1:3 at an 0.1-V bias. These measurements were made in vitro in carbonate-buffered saline using microelectrodes with a 2000 microm2 surface area.
-
IEEE Trans Biomed Eng · Feb 2006
Comparative StudyA single-lead ECG enhancement algorithm using a regularized data-driven filter.
We presented a novel way of deriving a subspace filter for enhancing a noisy electrocardiogram (ECG) signal contaminated by electromyogram (EMG). The new subspace filter was based on a multiple cycle prediction (MCP) modeling of a single-lead ECG. The adoption of an MCP model resulted in a data matrix more suitable for separating noise and signal subspaces than the linear prediction (LP) model that is implicitly assumed in many existing subspace filters. ⋯ To validate the new filter in a quantitative way, 12 clean realistic ECG segments with different degrees of heart rate variability generated using the ECGSyn program were mixed with different realizations of EMG noise in the MIT-BIH Noise Stress Test Database and locally acquired EMG at a typical 10-dB signal-to-noise ratio. The performance of the proposed method was compared to three existing ECG enhancement algorithms and achieved encouraging results. In addition, various ECG recordings from MIT-Arrythmia database were also mixed with EMG noise and subjected to the same four filters resulting in a qualitative comparison of them.