Acta biochimica et biophysica Sinica
-
Acta Biochim. Biophys. Sin. (Shanghai) · Mar 2021
ReviewCardiovascular disease in patients with COVID-19: evidence from cardiovascular pathology to treatment.
The coronavirus disease-2019 (COVID-19) caused by the novel coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly developed into a global pneumonia pandemic. Cardiovascular disease is the major comorbidity of COVID-19 patients and is closely related to the severity of COVID-19. ⋯ Intensive research on the SARS-CoV-2-associated cardiovascular complications is urgently needed to elucidate its exact mechanism and to identify potential drug targets, which will help to formulate effective prevention and treatment strategies. Hence, this review will summarize recent progress regarding the effects of COVID-19 on the cardiovascular system and describe the underlying mechanism of cardiovascular injury caused by SARS-CoV-2.
-
Acta Biochim. Biophys. Sin. (Shanghai) · Aug 2018
Telocytes promote VEGF expression and alleviate ventilator-induced lung injury in mice.
Mechanical ventilation (MV) is an important procedure for the treatment of patients with acute lung injury or acute respiratory distress syndrome in a clinical setting; however, MV can lead to severe complications, including ventilator-induced lung injury (VILI). Telocytes (TCs) can promote tissue repair following injury in the heart, kidneys, and other organs. ⋯ We also demonstrated that the impact of TCs on VILI repair might partially due to vascular endothelial growth factor (VEGF) secreted by TCs upon VILI stimulation, and that VEGF could induce the proliferation of hemangioendothelioma endothelial cells (EOMA). Collectively, our results revealed novel functions of TCs in VILA repair and shed light on the complications that are caused by MV.
-
Acta Biochim. Biophys. Sin. (Shanghai) · Jan 2017
ReviewTumor necrosis factor-α: a key contributor to intervertebral disc degeneration.
Intervertebral disc (IVD) degeneration (IDD) is the most common cause leading to low back pain (LBP), which is a highly prevalent, costly, and crippling condition worldwide. Current treatments for IDD are limited to treat the symptoms and do not target the pathophysiology. Tumor necrosis factor-α (TNF-α) is one of the most potent pro-inflammatory cytokines and signals through its receptors TNFR1 and TNFR2. ⋯ Importantly, anti-TNF-α therapy has shown promise for mitigating disc degeneration and relieving LBP. In this review, following a brief description of TNF-α signal transduction, we mainly focus on the expression pattern and roles of TNF-α in IDD, and summarize the emerging progress regarding its inhibition as a promising biological therapeutic approach to disc degeneration and associated LBP. A better understanding will help to develop novel TNF-α-centered therapeutic interventions for degenerative disc disease.
-
Acta Biochim. Biophys. Sin. (Shanghai) · Feb 2016
Functional up-regulation of Nav1.8 sodium channel on dorsal root ganglia neurons contributes to the induction of scorpion sting pain.
BmK I, purified from the venom of scorpion Buthus martensi Karsch (BmK), is a receptor site-3-specific modulator of voltage-gated sodium channels (VGSCs) and can induce pain-related behaviors in rats. The tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 contributes to most of the sodium current underlying the action potential upstroke in dorsal root ganglia (DRG) neurons and may serve as a critical ion channel targeted by BmK I. Herein, using electrophysiological, molecular, and behavioral approaches, we investigated whether the aberrant expression of Nav1.8 in DRG contributes to generation of pain induced by BmK I. ⋯ Furthermore, spontaneous pain and mechanical allodynia, but not thermal hyperalgesia induced by BmK I, are significantly alleviated through either blockade of the Nav1.8 sodium channel by its selective blocker A-803467 or knockdown of the Nav1.8 expression in DRG by antisense oligodeoxynucleotide (AS-ODN) targeting Nav1.8 in rats. Finally, BmK I was shown to induce enhanced pain behaviors in complete freund's adjuvant (CFA)-inflamed rats, which was partly due to the over-expression of Nav1.8 in DRG. Our results suggest that functional up-regulation of Nav1.8 channel on DRG neurons contributes to the development of BmK I-induced pain in rats.
-
Acta Biochim. Biophys. Sin. (Shanghai) · Apr 2015
Disturbance of hippocampal H2S generation contributes to CUMS-induced depression-like behavior: involvement in endoplasmic reticulum stress of hippocampus.
The chronic unpredictable mild stress (CUMS) model is a widely used experimental model of depression. Exogenous stress-induced neuronal cell death in the hippocampus is closely associated with the pathogenesis of depression. Excessive and prolonged endoplasmic reticulum (ER) stress triggers cell death. ⋯ Results showed that CUMS-treated rats exhibit depression-like behavior and hippocampal ER stress responses including up-regulated levels of glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein, and cleaved caspase-12 expression, while the endogenous generation of H2S in the hippocampus is suppressed in CUMS-treated rats. Furthermore, exogenous H2S prevents CUMS-induced depression-like behavior. These data indicated that CUMS-induced depression-like behaviors are related to the disturbance of endogenous H2S generation and ER stress in the hippocampus and suggested that endogenous H2S and ER stress are novel treatment targets of depression.