Molecular nutrition & food research
-
Although much has been published about curcumin, which is obtained from turmeric, comparatively little is known about turmeric itself. Turmeric, a golden spice obtained from the rhizome of the plant Curcuma longa, has been used to give color and taste to food preparations since ancient times. Traditionally, this spice has been used in Ayurveda and folk medicine for the treatment of such ailments as gynecological problems, gastric problems, hepatic disorders, infectious diseases, and blood disorders. ⋯ In clinical trials, turmeric has shown efficacy against numerous human ailments including lupus nephritis, cancer, diabetes, irritable bowel syndrome, acne, and fibrosis. Thus, a spice originally common in the kitchen is now exhibiting activities in the clinic. In this review, we discuss the chemical constituents of turmeric, its biological activities, its molecular targets, and its potential in the clinic.
-
Curcumin, the major extraction of turmeric, has been widely used in many countries for centuries both as a spice and as a medicine. In the last decade, researchers have found the beneficial effects of curcumin on multiple disorders are due to its antioxidative, anti-inflammatory, and antiproliferative properties, as well as its novel function as an inhibitor of histone aectyltransferases. In this review, we summarize the recent progress made on studying the beneficial effects of curcumin on multiple retinal diseases, including diabetic retinopathy, glaucoma, and age-related macular degeneration. Recent clinical trials on the effectiveness of phosphatidylcholine formulated curcumin in treating eye diseases have also shown promising results, making curcumin a potent therapeutic drug candidate for inflammatory and degenerative retinal and eye diseases.
-
Turmeric, a dried powder derived from the rhizome of Curcuma longa, has been used for centuries in certain parts of the world and has been linked to numerous biological activities including antioxidant, anti-inflammatory, anticancer, antigrowth, anti-arthritic, anti-atherosclerotic, antidepressant, anti-aging, antidiabetic, antimicrobial, wound healing, and memory-enhancing activities. One component of turmeric is curcumin, which has been extensively studied, as indicated by more than 5600 citations, most of which have appeared within the past decade. Recent research has identified numerous chemical entities from turmeric other than curcumin. ⋯ Studies over the past decade have indicated that curcumin-free turmeric (CFT) components possess numerous biological activities including anti-inflammatory, anticancer, and antidiabetic activities. Elemene derived from turmeric is approved in China for the treatment of cancer. The current review focuses on the anticancer and anti-inflammatory activities exhibited by CFT and by some individual components of turmeric, including turmerin, turmerone, elemene, furanodiene, curdione, bisacurone, cyclocurcumin, calebin A, and germacrone.
-
The present study was designed to examine the protective and antioxidative effects of curcumin (Cur) on streptozotocin (STZ) induced testicular damage, apoptotic germ cell death, and oxidative stress. ⋯ These results demonstrate that Cur attenuated testicular damage in diabetic rats by decreasing oxidative stress.