Acta physiologica
-
Studies from genetically modified animals have been instrumental in highlighting genes and their products involved in the regulation of muscle fibre type and oxidative phenotypes; however, evidence in humans is limited. Our aim was therefore to investigate expression of those genes implicated in the regulation of oxidative fibre phenotypes in humans. ⋯ Skeletal muscle mRNA expression of PPARalpha, PPARdelta, PGC-1alpha and -1beta reflects differences in type I muscle fibres associated with pathologically and physiologically induced skeletal muscle fibre type differences.
-
We compared the antagonistic effects of state-dependent gamma-aminobutyric acid A (GABA(A)) receptor blockers picrotoxin, Zn(2+) and pregnenolone sulphate (PS) on GABA- and pentobarbital-activated currents in recombinant rat GABA(A) receptors in Xenopus oocytes. ⋯ Pregnenolone sulphate was a gamma2-subunit independent inhibitor in the GABA(A) receptor, whereas the Zn(2+) antagonism was profoundly influenced by the gamma2-subunit. It is likely that the 2' residue closest to the N-terminus of the protein at M(2) helix on both alpha1 and beta2 subunit are critical to the inhibitory actions of PS and the function of Cl(-) channels. These results are consistent with the hypothesis that PS behaves as a Cl(-) channel blocker that does not share with Zn(2+), the coincident channel property in the GABA(A) receptors.
-
Comparative Study Clinical Trial
Chest wall kinematics, respiratory muscle action and dyspnoea during arm vs. leg exercise in humans.
We hypothesize that different patterns of chest wall (CW) kinematics and respiratory muscle coordination contribute to sensation of dyspnoea during unsupported arm exercise (UAE) and leg exercise (LE). ⋯ Leg exercise and UAE are associated with different patterns of CW kinematics, respiratory muscle coordination, and production of dyspnoea.
-
Effective arterial elastance (Ea), an index of arterial load, increases with elevations in left ventricular elastance to maximize the efficiency of left ventricular stroke work during exercise. Systemic arterial compliance (C) and vascular resistance (R) are the primary components contributing to Ea, and R plays a greater role in determining Ea at rest. We hypothesized that the contribution of C to Ea increases during exercise to maintain an optimal balance between arterial load and ventricular elastance, and that the increase in Ea is due primarily to a reduction in C. ⋯ The present results suggest that the contribution of systemic arterial compliance to effective arterial elastance increases during exercise. Therefore, we propose that the increase in arterial load during exercise is mainly driven by a reduction in systemic arterial compliance.
-
Review
Could chronic pain and spread of pain sensation be induced and maintained by glial activation?
An injury often starts with acute physiological pain, which becomes inflammatory or neuropathic, and may sometimes become chronic. It has been proposed recently that activated glial cells, astrocytes and microglia within the central nervous system could maintain the pain sensation even after the original injury or inflammation has healed, and convert it into chronic by altering neuronal excitability. Glial cell activation has also been proposed to be involved in the phenomenon of spread of pain sensation ipsilaterally or to the contralateral side (i.e. mirror image pain). ⋯ These new synapses could establish neuronal contacts for maintaining and spreading the pain sensation. If this theory holds true, it is possible that Ca2+ waves, production of cytokines and growth factors could be modified by selective anti-inflammatory drugs to achieve a balance in the activities of the different intercellular and intracellular processes. This paper reviews current knowledge about glial mechanisms underlying the phenomena of chronic pain and spread of the pain sensation.