Future microbiology
-
The rapid spread of SARS-CoV-2 leading to the COVID-19 pandemic with more than 400,000 deaths worldwide and the global economy shut down has substantially accelerated the research and development of novel and efficient COVID-19 antiviral drugs and vaccines. In the short term, antiviral and other drugs have been subjected to repurposing against COVID-19 demonstrating some success, but some excessively hasty conclusions drawn from significantly suboptimal clinical evaluations have provided false hope. On the other hand, more than 300 potential therapies and at least 150 vaccine studies are in progress at various stages of preclinical or clinical research. The aim here is to provide a timely update of the development, which, due to the intense activities, moves forward with unprecedented speed.
-
Future microbiology · Sep 2020
ReviewPathogenesis, clinical manifestations and complications of coronavirus disease 2019 (COVID-19).
Aim: Despite the similarities in the pathogenesis of the beta coronaviruses, the precise infective mechanisms of SARS-CoV-2 remain unclear. Objective: In this review, we aim to focus on the proposed theories behind the pathogenesis of SARS-CoV-2 and highlight the clinical complications related to COVID-19. ⋯ Conclusion: Respiratory system and the lungs are the most commonly involved sites of COVID-19 infection. Cardiovascular, liver, kidneys, gastrointestinal and central nervous systems are involved with different frequencies and degrees of severity.
-
Future microbiology · Sep 2020
EditorialSARS-CoV-2 transmission, the ambiguous role of children and considerations for the reopening of schools in the fall.
Tweetable abstract The reopening of schools in the fall entails risks given the controversies in pediatric COVID-19 pathogenesis and the ambiguous role of children in transmission.
-
Future microbiology · Jul 2020
Eggerthella lenta bloodstream infections: two cases and review of the literature.
Eggerthella lenta is an emerging and uncommon human pathogen that has been under recognized due to the limitations of phenotypic identification. Here we describe two cases of bacteremia caused by E. lenta and summarize the results of antimicrobial susceptibility testing according to some previous literatures, which illustrate the importance of identification and treatment of unusual organisms. The most reliable antibiotic treatment options to E. lenta appear to be metronidazole, amoxicillin-clavulanate, carbapenems, vancomycin, cefoxitin, chloramphenicol and clindamycin.