Translational research : the journal of laboratory and clinical medicine
-
Arthritis is a disease of joints. The biology of joints makes them very difficult targets for drug delivery in a manner that is specific and selective. This is especially true for proteinaceous drugs ("biologics"). ⋯ Only 2 clinical trials are presently underway, both phase II studies using allogeneic chondrocytes expressing transforming growth factor-β1 for the treatment of OA. Phase I studies using adeno-associated virus to deliver interleukin-1Ra in OA and interferon-β in RA are going through the regulatory process. It is to be hoped that the recent successes in treating rare, Mendelian diseases by gene therapy will lead to accelerated development of genetic treatments for common, non-Mendelian diseases, such as arthritis.
-
Ischemic cardiovascular disease remains the leading cause of death worldwide. Despite advances in the medical management of atherosclerosis over the past several decades, many patients require arterial revascularization to reduce mortality and alleviate ischemic symptoms. Technological advancements have led to dramatic increases in the use of percutaneous and endovascular approaches, yet surgical revascularization (bypass surgery) with autologous vein grafts remains a mainstay of therapy for both coronary and peripheral artery disease. ⋯ Bypass grafting presents an ideal opportunity for gene therapy, as surgically harvested vein grafts can be treated with gene delivery vectors ex vivo, thereby maximizing gene delivery while minimizing the potential for systemic toxicity and targeting the pathogenesis of vein graft disease at its onset. Here we will review the pathogenesis of vein graft disease and discuss vector delivery strategies and potential molecular targets for its prevention. We will summarize the preclinical and clinical literature on gene therapy in vein grafting and discuss additional considerations for future therapies to prevent vein graft disease.
-
Congestive heart failure is a major cause of morbidity and mortality with increasing social and economic costs. There have been no new high impact therapeutic agents for this devastating disease for more than a decade. ⋯ Altering the expression of these pivotal regulators using gene transfer is now either being tested in clinical gene transfer trials, or soon will be. In this review, we summarize recent progress in cardiac gene transfer for clinical congestive heart failure.
-
Type 1 diabetes (T1D) is an autoimmune disease for which there is no cure. The pancreatic beta cells are the source of insulin that keeps blood glucose normal. When susceptible individuals develop T1D, their beta cells are destroyed by autoimmune T lymphocytes and no longer produce insulin. ⋯ We will first outline the immune mechanisms that underlie T1D development and progression and review the scientific background and rationale for specific modes of immunotherapy. Numerous clinical trials using antigen-specific strategies and immune-modifying drugs have been published, though most have proved too toxic or have failed to provide long-term beta cell protection. To develop an effective immunotherapy, there must be a continued effort on defining the molecular basis that underlies T cell response to pancreatic islet antigens in T1D.
-
Investigational therapy can be successfully undertaken using viral- and nonviral-mediated ex vivo gene transfer. Indeed, recent clinical trials have established the potential for genetically modified T cells to improve and restore health. ⋯ We have focused on theoretical issues relating to insertional mutagenesis in the context of human genomes that are naturally subjected to remobilization of transposons and the experimental evidence over the last decade of employing SB transposons for defining genes that induce cancer. These findings are put into the context of the use of SB transposons in the treatment of human disease.