Translational research : the journal of laboratory and clinical medicine
-
Albuminuria is a sensitive marker to predict future cardiovascular events in patients with type 2 diabetes mellitus. However, current studies only use conventional regression models to discover predictors of albuminuria. We have used 2 different statistical models to predict albuminuria in type 2 diabetes mellitus: a multilayer perception neural network and a conditional logistic regression. ⋯ Using the conditional logistic regression model, glomerular filtration rate, time of onset to diabetes, and sex were significant indicators in the onset of albuminuria. Using a neural network model, we show that high-density lipoprotein is the most important factor in predicting albuminuria in type 2 diabetes mellitus. Our neural network model complements the current risk factor models to improve the care of patients with diabetes.