Translational research : the journal of laboratory and clinical medicine
-
Chronic kidney disease is associated with premature death from cardiovascular disease, which is, in part, driven by high density lipoprotein deficiency and dysfunction. One of the main causes of high density lipoprotein deficiency in chronic kidney disease is diminished plasma apolipoprotein (Apo)A-I level. Plasma ApoA-I is reduced in dialysis patients and hepatic ApoA-I messenger RNA (mRNA) is decreased in the uremic rats. ⋯ The pre- and postdialysis plasma exerted an equally potent inhibitory effect on ApoA-I mRNA abundance. Uremia lowers ApoA-I production by reducing its RNA stability. The inhibitory effect of uremic milieu on ApoA-I mRNA expression is mediated by non-dialyzable molecule(s) larger than 30 kd.
-
Excessive concentrations of oxidized phospholipids (OxPL), the products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (PAPC) oxidation have been detected in atherosclerosis, septic inflammation, and acute lung injury (ALI) and have been shown to induce vascular barrier dysfunction. In contrast, oxidized PAPC (OxPAPC) at low concentrations exhibit potent barrier protective effects. The nature of such biphasic effects remains unclear. ⋯ Barrier-disruptive effects of PGPC were abrogated by reactive oxygen species (ROS) inhibitor, N-acetyl cysteine, or Src kinase inhibitor, PP-2. The results of this study show that barrier disruptive effects of fragmented OxPAPC constituents (lyso-PC, POVPC, PGPC) are balanced by barrier enhancing effects of full length oxygenated products (PEIPC). These data strongly suggest that barrier disruptive effects of OxPAPC at higher concentrations are dictated by predominant effects of fragmented phospholipids such as PGPC, which promote ROS-dependent activation of Src kinase and VE-cadherin phosphorylation at Tyr(658) and Tyr(731) leading to disruption of endothelial cell AJs.