Translational research : the journal of laboratory and clinical medicine
-
Magnetoencephalography (MEG) is a noninvasive, silent, and totally passive neurophysiological imaging method with excellent temporal resolution (∼1 ms) and good spatial precision (∼3-5 mm). In a typical experiment, MEG data are acquired as healthy controls or patients with neurologic or psychiatric disorders perform a specific cognitive task, or receive sensory stimulation. The resulting data are generally analyzed using standard electrophysiological methods, coupled with advanced image reconstruction algorithms. ⋯ This review focuses on the clinical areas where MEG imaging has arguably had the greatest impact in regard to the identification of aberrant neural dynamics at the regional and network level, monitoring of disease progression, determining how efficacious pharmacologic and behavioral interventions modulate neural systems, and the development of neural markers of disease. Specifically, this review covers recent advances in understanding the abnormal neural oscillatory dynamics that underlie Parkinson's disease, autism spectrum disorders, human immunodeficiency virus (HIV)-associated neurocognitive disorders, cerebral palsy, attention-deficit hyperactivity disorder, cognitive aging, and post-traumatic stress disorder. MEG imaging has had a major impact on how clinical neuroscientists understand the brain basis of these disorders, and its translational influence is rapidly expanding with new discoveries and applications emerging continuously.
-
Limited information is available on the pathologic significance of human antigen R (HuR) in prostate cancer (PCa). The main aim of this study was to clarify the relationship between HuR expression and malignant aggressiveness, outcome, and expression of cancer-related molecules in PCa. In vitro proliferation, colony formation, and migration assays were performed on LNCaP and PC-3 cells. ⋯ C-HuR expression was positively associated with Gleason score, T stage, and metastasis, and it was considered to be a useful predictor of biochemical recurrence after radical prostatectomy. C-HuR expression was correlated with COX-2 expression in hormone-naïve PCa, and with the expression of VEGF-A, VEGF-C, and COX-2 in CRPC tissues. Our results demonstrated that HuR plays important roles in determining malignant aggressiveness and outcome in PCa, especially in androgen-independent PCa cells, via the regulation of cell proliferation, migration, and expression of VEGF-A, -C, and COX-2.