Translational research : the journal of laboratory and clinical medicine
-
An essential advantage during eukaryotic cell evolution was the acquisition of a network of mitochondria as a source of energy for cell metabolism and contrary to conventional wisdom, functional mitochondria are essential for the cancer cell. Multiple aspects of mitochondrial biology beyond bioenergetics support transformation including mitochondrial biogenesis, fission and fusion dynamics, cell death susceptibility, oxidative stress regulation, metabolism, and signaling. In cancer, the metabolism of cells is reprogrammed for energy generation from oxidative phosphorylation to aerobic glycolysis and impacts cancer mitochondrial function. ⋯ Several types of cancers harbor somatic mitochondrial DNA mutations and specific immune response to mutated mitochondrial proteins has been observed. An attractive alternative way to target the mitochondria in cancer cells is the induction of an adaptive immune response against mutated mitochondrial proteins. Here, we review the cancer cell-intrinsic and cell-extrinsic mechanisms through which mitochondria influence all steps of oncogenesis, with a focus on the therapeutic potential of targeting mitochondrial DNA mutations or Tumor Associated Mitochondria Antigens using the immune system.
-
The traditional view of mitochondria as isolated, spherical, energy producing organelles, is undergoing a revolutionary change. Emerging data show that mitochondria form a dynamic reticulum that is regulated by cycles of fission and fusion. The discovery of proteins that modulate these activities has led to important advances in understanding human disease. Here, we review the latest evidence that connects the emerging field of mitochondrial dynamics to skeletal muscle insulin resistance and propose some potential mechanisms that may explain the long debated link between mitochondria and the development of type 2 diabetes.
-
Mitochondria are essential intracellular organelles that are responsible for energy metabolism, cell growth, and differentiation, redox homeostasis, oncogenic signaling, and apoptosis. These multifunctional organelles have been implicated in cancer initiation, progression, and metastasis, relapse, and acquired drug resistance due to metabolic alterations in transformed cells. ⋯ We also discuss the potential of mtDNA as biomarkers of cancer detection and targets of cancer treatment. Deeper understanding of the mechanisms underlying these associations requires further investigation.
-
Adrenocortical dysplasia (ACD) is a shelterin protein involved in the maintenance of telomere length and in cancer radioresistance. This study investigated the expression profile of ACD in human gliomas and its role in radioresistance of glioma cells. The expression of ACD was analyzed in 62 different grades of glioma tissues and correlated with prognosis. ⋯ This study represents the first report, which demonstrated the expression pattern of ACD in gliomas and its prognostic value. Our results suggested that ACD is involved in glioblastoma radioresistance, likely through the modulation of telomerase activity, proliferation, and apoptosis. ACD might represent a potential molecular biomarker and a novel therapeutic target in glioblastoma.
-
Diabetes-related vascular complication rates remain unacceptably high despite guideline-based medical therapies that are significantly more effective in individuals without diabetes. This critical gap represents an opportunity for researchers and clinicians to collaborate on targeting mechanisms and pathways that specifically contribute to vascular pathology in patients with diabetes mellitus. ⋯ Targeting the mechanisms of production of mtROS or mtROS themselves represents an attractive method to reduce the prevalence and severity of diabetic vascular disease. This review focuses on the role of mitochondria in the development of diabetic vascular disease and current developments in methods to improve mitochondrial health to improve vascular outcomes in patients with DM.