Translational research : the journal of laboratory and clinical medicine
-
Prader-Willi syndrome (PWS) is a complex and multisystem neurobehavioral disorder. The molecular mechanism of PWS is deficiency of paternally expressed gene gene or genes from the chromosome 15q11-q13. Due to imprinted gene regulation, the same genes in the maternal chromosome 15q11-q13 are structurally intact but transcriptionally repressed by an epigenetic mechanism. ⋯ High content screening of small molecule libraries using cells derived from transgenic mice carrying the SNRPN-EGFP fusion protein has discovered that inhibitors of EHMT2/G9a, a histone 3 lysine 9 methyltransferase, are capable of reactivating expression of paternally expressed SNRPN and SNORD116 from the maternal chromosome, both in cultured PWS patient-derived fibroblasts and in a PWS mouse model. Treatment with an EMHT2/G9a inhibitor also rescues perinatal lethality and failure to thrive phenotypes in a PWS mouse model. These findings present the first evidence to support a proof-of-principle for epigenetic-based therapy for the PWS in humans.
-
The literature describing the prognosis of patients with gastrointestinal (GI) cancers and brain metastases (BM) is sparse. Our group previously published a prognostic index, the Graded Prognostic Assessment (GPA) for GI cancer patients with BM, based on 209 patients diagnosed from 1985-2005. The purpose of this analysis is to identify prognostic factors for GI cancer patients with newly diagnosed BM in a larger contemporary cohort. ⋯ Notably, 37% (267/716) presented with poor prognosis (GPA 0-1.0). Although little improvement in overall survival in this cohort has been achieved in recent decades, survival varies widely and multiple new prognostic factors were identified. Future work will translate these factors into a prognostic index to facilitate clinical decision-making and stratification of future clinical trials.
-
Mast cells (MCs) have been implicated in the pathogenesis of cardiometabolic diseases by releasing pro-inflammatory mediators. Patients and animals with diabetic cardiomyopathy (DCM) also show inflammatory cell accumulation in the heart. Here, we detected MCs in mouse heart after streptozotocin (STZ)-induced DCM. ⋯ Yet, adoptive transfer of BMMCs from Il6-/- and Tnf-/- mice failed to make these corrections or at much less extent than the WT BMMCs. Mechanistic studies demonstrated a role of MC and MC-derived IL6 and TNF-α in promoting cardiomyocyte death and cardiac fibroblast TGF-β signaling, and collagen synthesis and deposition. Therefore, MC inhibition may have therapeutic potential in attenuating DCM progression.
-
Arrhythmogenic cardiomyopathy is a genetic heart muscle disorder characterized by fibro-fatty replacement of cardiomyocytes leading to life-threatening ventricular arrhythmias, heart failure, and sudden cardiac death. Mutations in genes encoding cardiac junctional proteins are known to cause about half of cases, while remaining genetic causes are unknown. Using exome sequencing, we identified 2 missense variants (p. ⋯ H77Y and p. P70L, a variant previously reported in a dilated cardiomyopathy family, cause cardiac dysfunction and death by about 2-3 weeks of age. Our findings provide genetic and functional evidence that ILK is a cardiomyopathy disease gene and highlight its relevance for diagnosis and genetic counseling of inherited cardiomyopathies.