Translational research : the journal of laboratory and clinical medicine
-
Three-dimensional bioprinting has been gaining attention as a potential method for creating biological tissues, supplementing the current arsenal of tissue engineering techniques. 3D bioprinting raises the possibility of reproducibly creating complex macro- and microscale architectures using multiple different cell types. This is promising for creation of multilayered hollow organs, which has been challenging using more traditional tissue engineering techniques. ⋯ Most of the progress for the pulmonary system has been restricted to the trachea. Due to the gross structural similarities and common engineering challenges when creating any epithelialized hollow organ, this review also covers current progress in printing within the gastrointestinal and genitourinary systems, as well as applications of traditional plastic printing in engineering these tissues.
-
Vasculature is the network of blood vessels of an organ or body part that allow for the exchange of nutrients and waste to and from every cell, thus establishing a circulatory equilibrium. Vascular health is at risk from a variety of conditions that includes disease and trauma. In some cases, medical therapy can alleviate the impacts of the condition. ⋯ However, current vascular prostheses have limitations that include size mismatch with the native vessel, risk of immunogenicity from allografts and xenografts, and unavailability of autografts. In this review, we discuss efforts in bioprinting, an emerging method for vascular reconstruction. This includes an overview of 3D printing processes and materials, graft characterization strategies and the regulatory aspects to consider for the commercialization of 3D bioprinted vascular prostheses.
-
Extracellular fragments derived from plasma membrane receptors can play relevant roles in the development/progression of tumor pathologies, thereby offering novel diagnostic or therapeutic opportunities. The truncated variant of somatostatin receptor subtype-5, SST5TMD4, is an aberrantly spliced receptor with 4 transmembrane domains, highly overexpressed in several tumor types, whose C-terminal tail is exposed towards the extracellular matrix, and could therefore be the substrate for proteolytic enzymes. ⋯ Moreover, incubation with SST5TMD4-derived peptides enhanced malignancy features in all cancer cell types tested (ie proliferation, migration, etc.) and blunted the antiproliferative response to somatostatin in QGP-1 cells, acting probably through PI3K/AKT and/or MEK/ERK signaling pathways and the modulation of key cancer-associated genes (eg MMPs, MKI67, ACTR2/3, CD24/44). These results suggest that SST5TMD4-derived peptides could contribute to the strong oncogenic role of SST5TMD4 observed in multiple tumor pathologies, and, therefore, represent potential candidates to identify novel diagnostic, prognostic, or therapeutic targets in cancer.
-
Chronic lung disease is the 4th leading cause of death in the United States. Due to a shortage of donor lungs, alternative approaches to support failing, native lungs have been attempted, including mechanical ventilation and various forms of artificial lungs. However, each of these support methods causes significant complications when used for longer than a few days and are thus not capable of long-term support. ⋯ Like artificial lungs, biofabricated lungs do not need to follow the shape and structure of a native lung, allowing for simpler manufacture. However, various functional requirements must still be met, including stable, efficient gas exchange for a period of years. Design decisions depend on the disease state, how the organ is implanted, and the latest biofabrication methods available in a rapidly evolving field.