Translational research : the journal of laboratory and clinical medicine
-
The term autologous fecal microbiota transplantation (a-FMT) refers herein to the use of one's feces during a healthy state for later use to restore gut microbial communities after perturbations. Generally, heterologous fecal microbiota transplantation (h-FMT), where feces from a ``healthy" donor is transplanted into a person with illness, has been used to treat infectious diseases such as recurrent Clostridioides difficile infection (CDI), with cure rates of up to 90%. In humans, due to limited response to medicines, h-FMT has become a hallmark intervention to treat CDI. ⋯ FMT response variability could also be due to differences in microbiome composition between donors, recipients, and within individuals, which vary with diet, and environments, across regions. While donor selection has emerged as a key factor in FMT success, the use of heterologous donor stool still places the recipient at risk of exposure to infectious/pathogenic microorganisms. As an implementable solution, herein we review the available literature on a-FMT, and list some considerations on the benefits of a-FMT for IBD.
-
Recent innovations in translational research have ushered an exponential increase in the discovery of novel biomarkers, thereby elevating the hope for deeper insights into "personalized" medicine approaches to disease phenotyping and care. However, a critical gap exists between the fast pace of biomarker discovery and the successful translation to clinical use. This gap underscores the fundamental biomarker conundrum across various acute and chronic disorders: how does a biomarker address a specific unmet need? Additionally, the gap highlights the need to shift the paradigm from a focus on biomarker discovery to greater translational impact and the need for a more streamlined drug approval process. ⋯ Accordingly, this review discusses the current state of ARDS biomarkers in the context of the drug development pipeline and highlight gaps between biomarker discovery and clinical implementation while proposing potential paths forward. We discuss potential ARDS biomarkers by category and by context of use, highlighting progress in the development continuum. We conclude by discussing challenges to successful translation of biomarker candidates to clinical impact and proposing possible novel strategies.
-
Sepsis is defined as a dysregulated inflammatory response, which ultimately results from a perturbed interaction of both an altered immune system and the biomass and virulence of involved pathogens. This response has been tied to the intestinal microbiota, as the microbiota and its associated metabolites play an essential role in regulating the host immune response to infection. In turn, critical illness as well as necessary health care treatments result in a collapse of the intestinal microbiota diversity and a subsequent loss of health-promoting short chain fatty acids, such as butyrate, leading to the development of a maladaptive pathobiome. These perturbations of the microbiota contribute to the dysregulated immune response and organ failure associated with sepsis. Several case series have reported the ability of fecal microbiota transplant (FMT) to restore the host immune response and aid in recovery of septic patients. Additionally, animal studies have revealed the mechanism of FMT rescue in sepsis is likely related to the ability of FMT to restore butyrate producing bacteria and alter the innate immune response aiding in pathogen clearance. However, several studies have reported lethal complications associated with FMT, including bacteremia. Therefore, FMT in the treatment of sepsis is and should remain investigational until a more detailed mechanism of how FMT restores the host immune response in sepsis is determined, allowing for the development of more fine-tuned microbiota therapies.
-
Much of the population is now faced with an enormous burden of age-associated chronic diseases. Recent discoveries in geroscience indicate that healthspan in model organisms such as mice can be manipulated by targeting cellular senescence, a hallmark mechanism of aging, defined as an irreversible proliferative arrest that occurs when cells experience oncogenic or other diverse forms of damage. ⋯ Therapeutically targeting senescent cells in mice can prevent, delay, or alleviate each of these conditions. Therefore, senotherapeutic approaches, including senolytics and senomorphics, that either selectively eliminate senescent cells or interfere with their ability to promote tissue dysfunction, are gaining momentum as potential realistic strategies to abrogate human senescence to thereby compress morbidity and extend healthspan.
-
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the greatest worldwide pandemic since the 1918 flu. The consequences of the coronavirus disease 2019 (COVID-19) are devastating and represent the current major public health issue across the globe. At the onset, SARS-CoV-2 primarily attacks the respiratory system as it represents the main point of entry in the host, but it also can affect multiple organs. ⋯ Thus, diagnosing gastrointestinal symptoms that precede respiratory problems during COVID-19 may be necessary for improved early detection and treatment. Uncovering the composition of the microbiota and its metabolic products in the context of COVID-19 can help determine novel biomarkers of the disease and help identify new therapeutic targets. Elucidating changes to the microbiome as reliable biomarkers in the context of COVID-19 represent an overlooked piece of the disease puzzle and requires further investigation.