Translational research : the journal of laboratory and clinical medicine
-
Alzheimer's disease (AD) is an immense and growing public health crisis. Despite over 100 years of investigation, the etiology remains elusive and therapy ineffective. Despite current gaps in knowledge, recent studies have identified dysfunction or loss-of-function of Pin1, a unique cis-trans peptidyl prolyl isomerase, as an important step in AD pathogenesis. Here I review the functionality of Pin1 and its role in neurodegeneration.
-
The present study hypothesizes that the ischemic insults activate epicardial adipose tissue-derived stem cells (EATDS) to secrete extracellular vesicles (EVs) packed with regenerative mediators to alter the gene expression in cardiac fibroblasts (CF). EATDS and CF were isolated from hyperlipidemic microswine and EVs were harvested from control, simulated ischemia (ISC) and ischemia-reperfusion (ISC/R) groups. The in vitro interaction between ISC-EVs and CF resulted in the upregulation of cardiomyocyte-specific transcription factors including GATA4, Nkx2.5, IRX4, and TBX5 in CF and the healing marker αSMA and the downregulation of fibroblast biomarkers such as vimentin, FSP1, and podoplanin and the cardiac biomarkers such as troponin-I and connexin-43. ⋯ The LC-MS/MS analysis of ISC-EVs LGALS1, PRDX2, and CCL2 to be the potent protein mediators which are intimately involved in versatile regenerative processes and connected with a diverse array of regenerative genes. Moreover, the LGALS1+, PRDX2+, and CCL2+ EATDS phenotypes were deciphered at single cell resolution revealing corresponding sub-populations with superior healing potential. Overall, the findings unveiled the healing potential of EATDS-derived EVs and sub-populations of regenerative EATDS promising novel translational opportunities in improved cardiac healing following ischemic injury.
-
With the increasing prevalence of Alzheimer's disease (AD) among aging populations and the limited therapeutic options available to slow or reverse its progression, the need has never been greater for improved diagnostic tools for identifying patients in the preclinical and prodomal phases of AD. Biophysics models of the connectome-based spread of amyloid-beta (Aβ) and microtubule-associated protein tau (τ) have enjoyed recent success as tools for predicting the time course of AD-related pathological changes. ⋯ Here we discuss several areas of active research in AD whose insights can be used to enhance the mathematical modeling of AD pathology as well as recent attempts at developing improved connectome-based biophysics models. These efforts toward a comprehensive yet parsimonious mathematical description of AD hold great promise for improving both the diagnosis of patients at risk for AD and our mechanistic understanding of how AD progresses.
-
Traumatic brain injury (TBI) and Alzheimer's disease (AD) represent 2 of the largest sources of death and disability in the United States. Recent studies have identified TBI as a potential risk factor for AD development, and numerous reports have shown that TBI is linked with AD associated protein expression during the acute phase of injury, suggesting an interplay between the 2 pathologies. The inflammasome is a multi-protein complex that plays a role in both TBI and AD pathologies, and is characterized by inflammatory cytokine release and pyroptotic cell death. ⋯ Additionally, multiple genetic mutations associated with AD development alter microglia inflammatory activity, increasing and perpetuating inflammatory cell damage. In this review, we discuss the pathologies of TBI and AD and how they are impacted by and potentially interact through inflammasome activity and signaling proteins. We discuss current clinical trials that target the inflammasome to reduce heightened inflammation associated with these disorders.
-
Targeting amyloid-β plaques and tau tangles has failed to provide effective treatments for Alzheimer's disease and related dementias (ADRD). A more fruitful pathway to ADRD therapeutics may be the development of therapies that target common signaling pathways that disrupt synaptic connections and impede communication between neurons. In this review, we present our characterization of a signaling pathway common to several neurological diseases featuring dementia including Alzheimer's disease, frontotemporal dementia, Lewy body dementia, and Huntington's disease. ⋯ Here, we review the accumulated evidence supporting Casp2 as a druggable target and its importance in ADRD. Additionally, we provide a brief overview of our initial medicinal chemistry explorations aimed at the preparation of novel, brain penetrant Casp2 inhibitors. We anticipate that this review will spark broader interest in Casp2 as a target for restoring synaptic dysfunction in ADRD.