Translational research : the journal of laboratory and clinical medicine
-
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by progressive neurodegeneration and cognitive decline. Understanding the pathophysiology underlying AD is paramount for the management of individuals at risk of and suffering from AD. The vascular hypothesis stipulates a relationship between cardiovascular disease and AD-related changes although the nature of this relationship remains unknown. ⋯ Cerebral small vessel disease such as cerebral amyloid angiopathy, characterized by the aggregation of Aß in the vessel wall, is highly prevalent in vascular dementia and AD patients. Current data is unclear whether cardiovascular disease causes, precipitates, amplifies, precedes, or simply coincides with AD. Targeted imaging tools to quantitatively evaluate the intracranial vasculature and longitudinal studies in individuals at risk for or in the early stages of the AD continuum could be critical in disentangling this complex relationship between vascular disease and AD.
-
Traumatic brain injury (TBI) and Alzheimer's disease (AD) represent 2 of the largest sources of death and disability in the United States. Recent studies have identified TBI as a potential risk factor for AD development, and numerous reports have shown that TBI is linked with AD associated protein expression during the acute phase of injury, suggesting an interplay between the 2 pathologies. The inflammasome is a multi-protein complex that plays a role in both TBI and AD pathologies, and is characterized by inflammatory cytokine release and pyroptotic cell death. ⋯ Additionally, multiple genetic mutations associated with AD development alter microglia inflammatory activity, increasing and perpetuating inflammatory cell damage. In this review, we discuss the pathologies of TBI and AD and how they are impacted by and potentially interact through inflammasome activity and signaling proteins. We discuss current clinical trials that target the inflammasome to reduce heightened inflammation associated with these disorders.
-
Targeting amyloid-β plaques and tau tangles has failed to provide effective treatments for Alzheimer's disease and related dementias (ADRD). A more fruitful pathway to ADRD therapeutics may be the development of therapies that target common signaling pathways that disrupt synaptic connections and impede communication between neurons. In this review, we present our characterization of a signaling pathway common to several neurological diseases featuring dementia including Alzheimer's disease, frontotemporal dementia, Lewy body dementia, and Huntington's disease. ⋯ Here, we review the accumulated evidence supporting Casp2 as a druggable target and its importance in ADRD. Additionally, we provide a brief overview of our initial medicinal chemistry explorations aimed at the preparation of novel, brain penetrant Casp2 inhibitors. We anticipate that this review will spark broader interest in Casp2 as a target for restoring synaptic dysfunction in ADRD.
-
Alzheimer's disease (AD) is an immense and growing public health crisis. Despite over 100 years of investigation, the etiology remains elusive and therapy ineffective. Despite current gaps in knowledge, recent studies have identified dysfunction or loss-of-function of Pin1, a unique cis-trans peptidyl prolyl isomerase, as an important step in AD pathogenesis. Here I review the functionality of Pin1 and its role in neurodegeneration.
-
CD36 is a transmembrane glycoprotein receptor for oxidized low density lipoprotein (LDL) and other endogenous danger signals and promotes athero-thrombotic processes. CD36 has been shown to associate physically with other transmembrane proteins, including integrins, tetraspanins, and toll-like receptors, which modulate CD36-mediated cell signaling. The CD36 N-terminal transmembrane domain (nTMD) contains a GXXXG sequence motif that mediates protein-protein interactions in many membrane proteins. ⋯ Prior to performing these assays, cells were incubated with a synthetic 29 amino acid peptide containing the 22 amino acid of CD36 nTMD or a control peptide in which the glycine residues in GXXXG motif were replaced by valines. In functional experiments, macrophages were preincubated with peptides and then treated with oxLDL to assess LDL uptake, foam cell formation, ROS formation and cell migration. CD36 nTMD peptide treated cells compared to untreated or control peptide treated cells showed decreased CD36 surface associations with tetraspanin CD9 and ameliorated pathologically important CD36 mediated responses to oxLDL, including uptake of DiI-labeled oxLDL, foam cell formation, ROS generation, and inhibition of migration.