Translational research : the journal of laboratory and clinical medicine
-
Pulmonary fibrosis refers to the development of diffuse parenchymal abnormalities in the lung that cause dyspnea, cough, hypoxemia, and impair gas exchange, ultimately leading to respiratory failure. Though pulmonary fibrosis can be caused by a variety of underlying etiologies, ranging from genetic defects to autoimmune diseases to environmental exposures, once fibrosis develops it is irreversible and most often progressive, such that fibrosis of the lung is one of the leading indications for lung transplantation. This review aims to provide a concise summary of the recent advances in our understanding of the genetics and genomics of pulmonary fibrosis, idiopathic pulmonary fibrosis in particular, and how these recent discoveries may be changing the clinical approach to diagnosing and treating patients with fibrotic interstitial lung disease.
-
Review
Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis.
Systemic sclerosis (SSc, scleroderma) is a complex multisystem disease characterized by autoimmunity, vasculopathy, and most notably, fibrosis. Multiple lines of evidence demonstrate a variety of emerging cellular and molecular pathways which are relevant to fibrosis in SSc. The myofibroblast remains the key effector cell in SSc. ⋯ Studies now show that (1) multiple cell types give rise to myofibroblasts, (2) fibroblasts and myofibroblasts are heterogeneous, and (3) that a large number of (primarily immune) cells have important influences on the transition of fibroblasts to an activated myofibroblasts. In SSc, this differentiation process involves multiple pathways, including well known signaling cascades such as TGF-β and Wnt/β-Catenin signaling, as well as epigenetic reprogramming and a number of more recently defined cellular pathways. After reviewing the major and emerging cellular and molecular mechanisms underlying SSc, this article looks to identify clinical applications where this new molecular knowledge may allow for targeted treatment and personalized medicine approaches.
-
Prader-Willi syndrome (PWS) is a complex and multisystem neurobehavioral disorder. The molecular mechanism of PWS is deficiency of paternally expressed gene gene or genes from the chromosome 15q11-q13. Due to imprinted gene regulation, the same genes in the maternal chromosome 15q11-q13 are structurally intact but transcriptionally repressed by an epigenetic mechanism. ⋯ High content screening of small molecule libraries using cells derived from transgenic mice carrying the SNRPN-EGFP fusion protein has discovered that inhibitors of EHMT2/G9a, a histone 3 lysine 9 methyltransferase, are capable of reactivating expression of paternally expressed SNRPN and SNORD116 from the maternal chromosome, both in cultured PWS patient-derived fibroblasts and in a PWS mouse model. Treatment with an EMHT2/G9a inhibitor also rescues perinatal lethality and failure to thrive phenotypes in a PWS mouse model. These findings present the first evidence to support a proof-of-principle for epigenetic-based therapy for the PWS in humans.
-
The literature describing the prognosis of patients with gastrointestinal (GI) cancers and brain metastases (BM) is sparse. Our group previously published a prognostic index, the Graded Prognostic Assessment (GPA) for GI cancer patients with BM, based on 209 patients diagnosed from 1985-2005. The purpose of this analysis is to identify prognostic factors for GI cancer patients with newly diagnosed BM in a larger contemporary cohort. ⋯ Notably, 37% (267/716) presented with poor prognosis (GPA 0-1.0). Although little improvement in overall survival in this cohort has been achieved in recent decades, survival varies widely and multiple new prognostic factors were identified. Future work will translate these factors into a prognostic index to facilitate clinical decision-making and stratification of future clinical trials.
-
Mast cells (MCs) have been implicated in the pathogenesis of cardiometabolic diseases by releasing pro-inflammatory mediators. Patients and animals with diabetic cardiomyopathy (DCM) also show inflammatory cell accumulation in the heart. Here, we detected MCs in mouse heart after streptozotocin (STZ)-induced DCM. ⋯ Yet, adoptive transfer of BMMCs from Il6-/- and Tnf-/- mice failed to make these corrections or at much less extent than the WT BMMCs. Mechanistic studies demonstrated a role of MC and MC-derived IL6 and TNF-α in promoting cardiomyocyte death and cardiac fibroblast TGF-β signaling, and collagen synthesis and deposition. Therefore, MC inhibition may have therapeutic potential in attenuating DCM progression.