Translational research : the journal of laboratory and clinical medicine
-
Frailty is a complex late life phenotype characterized by cumulative declines in multiple physiological systems that increases the risk for disability and mortality. The biological changes associated with aging are risk factors for frailty as well as for complex diseases; whereas longevity is assumed to be an outcome of protective biological mechanisms. ⋯ The complexity of these phenotypes and relatively low heritability in studies are the main roadblocks in deciphering genetic mechanisms of these age associated conditions. We review genetic research related to frailty, and discuss the possible intertwined biology of frailty and longevity.
-
Frailty is a clinical state of vulnerability to stressors resulting from cumulative alterations in multiple physiological and molecular systems. Frailty assessment in patients with chronic disease is useful for identifying those who are at increased risk for poor clinical and patient reported outcomes. ⋯ Herein, we review the literature and potential pathobiological mechanisms underpinning associations between frailty in lung disease and age, sex, comorbidity and symptom burden, severity of lung disease, inflammatory biomarkers, various clinical parameters, body composition measures, and physical activity levels. We also propose a multipronged program of future research focused on improving the accuracy and precision of frailty measurement in lung disease, identifying blood-based biomarkers and measures of body composition for frailty, determining whether subphenotypes of frailty with distinct pathobiology exist, and developing personalized interventions that target the specific underlying mechanisms causing frailty.
-
The human microbiome is constituted by an extensive network of organisms that lie at the host/environment interface and transduce signals that play vital roles in human health and disease across the lifespan. Frailty is a critical aging-related syndrome marked by diminished physiological reserve and heightened vulnerability to stress, predictive of major adverse clinical outcomes including death. ⋯ We discuss HIV infection as a key prototype for elucidating the complex pathways via which the microbiome may precipitate frailty. Finally, we review considerations for future research efforts.
-
The age-associated decline in muscle mass has become synonymous with physical frailty among the elderly due to its major contribution in reduced muscle function. Alterations in protein and redox homeostasis along with chronic inflammation, denervation, and hormonal dysregulation are all hallmarks of muscle wasting and lead to clinical sarcopenia in older adults. Reduction in skeletal muscle mass has been observed and reported in the scientific literature for nearly 2 centuries; however, identification and careful examination of molecular mediators of age-related muscle atrophy have only been possible for roughly 3 decades. Here we review molecular targets of recent interest in age-related muscle atrophy and briefly discuss emerging small molecule therapeutic treatments for muscle wasting in sarcopenic susceptible populations.