Epigenomics
-
Epigenetic mechanisms have long been associated with the regulation of gene-expression changes accompanying normal neuronal development and cellular differentiation; however, until recently these mechanisms were believed to be statically quiet in the adult brain. Behavioral neuroscientists have now begun to investigate these epigenetic mechanisms as potential regulators of gene-transcription changes in the CNS subserving synaptic plasticity and long-term memory (LTM) formation. Experimental evidence from learning and memory animal models has demonstrated that active chromatin remodeling occurs in terminally differentiated postmitotic neurons, suggesting that these molecular processes are indeed intimately involved in several stages of LTM formation, including consolidation, reconsolidation and extinction. ⋯ The present article examines how such learning-induced epigenetic changes contribute to LTM formation and influence behavior. In particular, this article is a survey of the specific epigenetic mechanisms that have been demonstrated to regulate gene expression for both transcription factors and growth factors in the CNS, which are critical for LTM formation and storage, as well as how aberrant epigenetic processing can contribute to psychological states such as schizophrenia and drug addiction. Together, the findings highlighted in this article support a novel role for epigenetic mechanisms in the adult CNS serving as potential key molecular regulators of gene-transcription changes necessary for LTM formation and adult behavior.
-
Classical genetic studies established a link between Type 1 diabetes, a common childhood autoimmune disease and genes that encode MHC antigens and several immune-related determinants. The mechanisms by which these genes contribute to the initiation and perpetuation of Type 1 diabetes remain enigmatic. ⋯ In this article the implications of these and other epigenetic mechanisms including ncRNA-mediated gene regulation in the abrogation of autoimmune diabetes are discussed. Concerted efforts to decipher the epigenetics of Type 1 diabetes may provide novel perspectives on autoimmune diabetogenesis.