Journal of healthcare engineering
-
Electrocardiogram (ECG) signal analysis has received special attention of the researchers in the recent past because of its ability to divulge crucial information about the electrophysiology of the heart and the autonomic nervous system activity in a noninvasive manner. Analysis of the ECG signals has been explored using both linear and nonlinear methods. However, the nonlinear methods of ECG signal analysis are gaining popularity because of their robustness in feature extraction and classification. The current study presents a review of the nonlinear signal analysis methods, namely, reconstructed phase space analysis, Lyapunov exponents, correlation dimension, detrended fluctuation analysis (DFA), recurrence plot, Poincaré plot, approximate entropy, and sample entropy along with their recent applications in the ECG signal analysis.
-
Patients with suspected spinal cord injuries undergo numerous transfers throughout treatment and care. Effective c-spine stabilization is crucial to minimize the impacts of the suspected injury. Healthcare professionals are trained to perform those transfers using simulation; however, the feedback on the manoeuvre is subjective. ⋯ In this scenario, 55% of the c-spine motion could be explained by the difficulty of rescuers to maintain head and trunk alignment during the rotation part of the log-roll and their difficulty to initiate specific phases of the motion synchronously. Conclusion. The proposed quantitative approach has the potential to be used for personalized feedback during training sessions and could even be embedded into simulation mannequins to provide an innovative training solution.