Computers in biology and medicine
-
The aims were to apply a stochastic model to predict outcome early in acute emergencies and to evaluate the effectiveness of various therapies in a consecutively monitored series of severely injured patients with noninvasive hemodynamic monitoring. The survival probabilities were calculated beginning shortly after admission to the emergency department (ED) and at subsequent intervals during their hospitalization. Cardiac function was evaluated by cardiac output (CI), heart rate (HR), and mean arterial blood pressure (MAP), pulmonary function by pulse oximetry (SapO(2)), and tissue perfusion function by transcutaneous oxygen indexed to FiO(2),(PtcO(2)/FiO(2)), and carbon dioxide (PtcCO(2)) tension. ⋯ The CI, SapO(2),PtcO(2)/FiO(2) and MAP were significantly higher in survivors than in nonsurvivors during the initial resuscitation, while HR and PtcCO(2) tensions were higher in the nonsurvivors. Predictions made during the initial resuscitation period in the first 24-hours after admission were compared with the actual outcome at hospital discharge, which were usually several weeks later; misclassifications were 9.6% (16/167). The therapeutic decision support system objectively evaluated the responses of alternative therapies based on responses of patients with similar clinical-hemodynamic states.
-
This work describes a model able to synthetize the surface EMG (electromyography) signal acquired from tibialis anterior and gastrocnemious medialis muscles during walking of asymptomatic adult subjects. The model assumes a muscle structure where the volume conductor is represented by multiple layers of anisotropic media. ⋯ The parameters related to the gait cycle, such as onset and cessation timings of muscle activation, amplitude of muscle contraction, periods and sequences of motor units' recruitment, are included in the model presented. In addition, the relative positions of the electrodes during gait can also be specified in order to adapt the simulation to the different acquisition settings.